版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过圆外一点引圆的两条切线,则经过两切点的直线方程是().A. B. C. D.2.方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足()A. B. C. D.3.已知集合,,则为()A. B. C. D.4.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.5.已知是函数的极大值点,则的取值范围是A. B.C. D.6.已知,则()A. B. C. D.7.如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为()A.4 B. C.2 D.8.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:,)A. B. C. D.9.设全集,集合,则=()A. B. C. D.10.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()A. B.C. D.11.设函数的定义域为,命题:,的否定是()A., B.,C., D.,12.根据散点图,对两个具有非线性关系的相关变量x,y进行回归分析,设u=lny,v=(x-4)2,利用最小二乘法,得到线性回归方程为=0.5v+2,则变量y的最大值的估计值是()A.e B.e2 C.ln2 D.2ln2二、填空题:本题共4小题,每小题5分,共20分。13.若为假,则实数的取值范围为__________.14.若函数,则__________;__________.15.在中,内角的对边分别是,若,,则____.16.甲、乙、丙、丁四人参加冬季滑雪比赛,有两人获奖.在比赛结果揭晓之前,四人的猜测如下表,其中“√”表示猜测某人获奖,“×”表示猜测某人未获奖,而“○”则表示对某人是否获奖未发表意见.已知四个人中有且只有两个人的猜测是正确的,那么两名获奖者是_______.甲获奖乙获奖丙获奖丁获奖甲的猜测√××√乙的猜测×○○√丙的猜测×√×√丁的猜测○○√×三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面为直角梯形,,面.(1)在线段上是否存在点,使面,说明理由;(2)求二面角的余弦值.18.(12分)如图所示,在三棱柱中,为等边三角形,,,平面,是线段上靠近的三等分点.(1)求证:;(2)求直线与平面所成角的正弦值.19.(12分)已知函数(1)若,不等式的解集;(2)若,求实数的取值范围.20.(12分)联合国粮农组织对某地区最近10年的粮食需求量部分统计数据如下表:年份20102012201420162018需求量(万吨)236246257276286(1)由所给数据可知,年需求量与年份之间具有线性相关关系,我们以“年份—2014”为横坐标,“需求量”为纵坐标,请完成如下数据处理表格:年份—20140需求量—2570(2)根据回归直线方程分析,2020年联合国粮农组织计划向该地区投放粮食300万吨,问是否能够满足该地区的粮食需求?参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.21.(12分)在直角坐标系中,直线的参数方程为为参数),直线的参数方程(为参数),若直线的交点为,当变化时,点的轨迹是曲线(1)求曲线的普通方程;(2)以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线的极坐标方程为,,点为射线与曲线的交点,求点的极径.22.(10分)在四棱锥中,底面是平行四边形,底面.(1)证明:;(2)求二面角的正弦值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【答案解析】过圆外一点,引圆的两条切线,则经过两切点的直线方程为,故选.2.D【答案解析】
由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围【题目详解】解:由题意方程的实数根叫做函数的“新驻点”,对于函数,由于,,设,该函数在为增函数,,,在上有零点,故函数的“新驻点”为,那么故选:.【答案点睛】本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题..3.C【答案解析】
分别求解出集合的具体范围,由集合的交集运算即可求得答案.【题目详解】因为集合,,所以故选:C【答案点睛】本题考查对数函数的定义域求法、一元二次不等式的解法及集合的交集运算,考查基本运算能力.4.A【答案解析】
根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【题目详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【答案点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.5.B【答案解析】
方法一:令,则,,当,时,,单调递减,∴时,,,且,∴,即在上单调递增,时,,,且,∴,即在上单调递减,∴是函数的极大值点,∴满足题意;当时,存在使得,即,又在上单调递减,∴时,,所以,这与是函数的极大值点矛盾.综上,.故选B.方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得,故选B.6.B【答案解析】
利用诱导公式以及同角三角函数基本关系式化简求解即可.【题目详解】,本题正确选项:【答案点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力.7.A【答案解析】
由,两边平方后展开整理,即可求得,则的长可求.【题目详解】解:,,,,,,.,,故选:.【答案点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.8.C【答案解析】
由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出.【题目详解】由题意可得莞草与蒲草第n天的长度分别为据题意得:,解得2n=12,∴n21.故选:C.【答案点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.9.A【答案解析】
先求得全集包含的元素,由此求得集合的补集.【题目详解】由解得,故,所以,故选A.【答案点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.10.D【答案解析】根据四个列联表中的等高条形图可知,图中D中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.11.D【答案解析】
根据命题的否定的定义,全称命题的否定是特称命题求解.【题目详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【答案点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.12.B【答案解析】
将u=lny,v=(x-4)2代入线性回归方程=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值.【题目详解】解:将u=lny,v=(x4)2代入线性回归方程=0.5v+2得:,即,当时,取到最大值2,因为在上单调递增,则取到最大值.故选:B.【答案点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
由为假,可知为真,所以对任意实数恒成立,求出的最小值,令即可.【题目详解】因为为假,则其否定为真,即为真,所以对任意实数恒成立,所以.又,当且仅当,即时,等号成立,所以.故答案为:.【答案点睛】本题考查全称命题与特称命题间的关系的应用,利用参变分离是解决本题的关键,属于中档题.14.01【答案解析】
根据分段函数解析式,代入即可求解.【题目详解】函数,所以,.故答案为:0;1.【答案点睛】本题考查了分段函数求值的简单应用,属于基础题.15.【答案解析】
由,根据正弦定理“边化角”,可得,根据余弦定理,结合已知联立方程组,即可求得角.【题目详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:.由故答案为:.【答案点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.16.乙、丁【答案解析】
本题首先可根据题意中的“四个人中有且只有两个人的猜测是正确的”将题目分为四种情况,然后对四种情况依次进行分析,观察四人所猜测的结果是否冲突,最后即可得出结果.【题目详解】从表中可知,若甲猜测正确,则乙,丙,丁猜测错误,与题意不符,故甲猜测错误;若乙猜测正确,则依题意丙猜测无法确定正误,丁猜测错误;若丙猜测正确,则丁猜测错误;综上只有乙,丙猜测不矛盾,依题意乙,丙猜测是正确的,从而得出乙,丁获奖.所以本题答案为乙、丁.【答案点睛】本题是一个简单的合情推理题,能否根据“四个人中有且只有两个人的猜测是正确的”将题目所给条件分为四种情况并通过推理判断出每一种情况的正误是解决本题的关键,考查推理能力,是简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)存在;详见解析(2)【答案解析】
(1)利用面面平行的性质定理可得,为上靠近点的三等分点,中点,证明平面平面即得;(2)过作交于,可得两两垂直,以分别为轴建立空间直角坐标系,求出长,写出各点坐标,用向量法求二面角.【题目详解】解:(1)当为上靠近点的三等分点时,满足面.证明如下,取中点,连结.即易得所以面面,即面.(2)过作交于面,两两垂直,以分别为轴建立空间直角坐标系,如图,设面法向量,则,即取同理可得面的法向量综上可知锐二面角的余弦值为.【答案点睛】本题考查立体几何中的存探索性命题,考查用空间向量法求二面角.线面平行问题可通过面面平行解决,一定要掌握:立体几何中线线平行、线面平行、面面平行是相互转化、相互依存的.求空间角一般是建立空间直角坐标系,用空间向量法求空间角.18.(1)证明见解析(2)【答案解析】
(1)由,故,所以四边形为菱形,再通过,证得,所以四边形为正方形,得到.(2)根据(1)的论证,建立空间直角坐标,设平面的法向量为,由求得,再由,利用线面角的向量法公式求解.【题目详解】(1)因为,故,所以四边形为菱形,而平面,故.因为,故,故,即四边形为正方形,故.(2)依题意,.在正方形中,,故以为原点,所在直线分别为、、轴,建立如图所示的空间直角坐标系;如图所示:不纺设,则,又因为,所以.所以.设平面的法向量为,则,即,令,则.于是.又因为,设直线与平面所成角为,则,所以直线与平面所成角的正弦值为.【答案点睛】本题考查空间线面的位置关系、线面成角,还考查空间想象能力以及数形结合思想,属于中档题.19.(1)(2)【答案解析】
(1)依题意可得,再用零点分段法分类讨论可得;(2)依题意可得对恒成立,根据绝对值的几何意义将绝对值去掉,分别求出解集,则两解集的并集为,得到不等式即可解得;【题目详解】解:(1)若,,则,即,当时,原不等式等价于,解得当时,原不等式等价于,解得,所以;当时,原不等式等价于,解得;综上,原不等式的解集为;(2)即,得或,由解得,由解得,要使得的解集为,则解得,故的取值范围是.【答案点睛】本题考查绝对值不等式的解法,着重考查等价转化思想与分类讨论思想的综合应用,属于中档题.20.(1)见解析;(2)能够满足.【答案解析】
(1)根据表中数据,结合以“年份—2014”为横坐标,“需求量”为纵坐标的要求即可完成表格;(2)根据表中及所给公式可求得线性回归方程,由线性回归方程预测2020年的粮食需求量,即可作出判断.【题目详解】(1)由所给数据和已知条件,对数据处理表格如下:年份—2014024需求量—25701929(2)由题意可知,变量与之间具有线性相关关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 军训自我鉴定-合集15篇
- 财务会计实习报告模板集锦九篇
- 2023四年级语文上册 第二单元 8 蝴蝶的家教学实录 新人教版
- 2022文明礼仪演讲稿
- 钳工毕业实习报告9篇
- 转正申请个人总结12篇
- 中考百日誓师致辞(合集15篇)
- 河道清淤实施方案
- 河北省邯郸市部分重点高中2024-2025学年高三上学期11月模拟预测试题生物试卷含答案
- 物质成瘾stroop效应
- 2023年中医养生之药膳食疗考试试题
- 《医学人文课件》
- 四川省成都市龙泉驿区2023-2024学年三年级数学第一学期期末监测试题含答案
- 高空除锈刷漆施工方案模板
- 锅炉控制器modbus协议支持说明
- 粉末涂料有限公司危废库安全风险分级管控清单
- 安全生产信息管理制度全
- 住宅物业危险源辨识评价表
- 世界主要国家洲别、名称、首都、代码、区号、时差汇总表
- 2023学年广东省广州市越秀区铁一中学九年级(上)物理期末试题及答案解析
- 《报告文学研究》(07562)自考考试复习题库(含答案)
评论
0/150
提交评论