现代控制理论第二章_第1页
现代控制理论第二章_第2页
现代控制理论第二章_第3页
现代控制理论第二章_第4页
现代控制理论第二章_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§2-1线性定常齐次状态方程的解(自由解

若初始时刻t0x(t0)x0,则式(2-1) x(t)eA(tt0)x,t 若初始时刻从t0x(0)x0

0x(t)eAtx0

t

证:先假设式(2-1)的解x(t)为t的矢量幂级数形式,即x(t)bbtbt2btk

x(tb2bt3bt2kbtk1 代人式(2-1)xA(bbtbt2btk) 既然式(2-4)是(2-1)的解,则式(2-5)对任意时刻t都成立,故t的同次幂项的系数应bAb,b1

1A2b,b1Ab1A3b

b1 1Akb k 在式(2-4)中,令t0b0x(0)4,故得:x(t)(1At1A2t21Aktk

括号内的展开式是nn矩阵,它是一个矩阵指数函数,记为eeAt1At

A2t2

1AktkK01AktkK0 再用(tt代替(t0,即在代替tx(t)eA(tt0x 2-2矩阵指数函数——状态转移矩 X(teAtXX(teA(tt0 由上式可知,它反映了从初始时刻的状态向量到任意t0或tt0

X(t0种向量变换关系。变换矩阵就是eAt,它不是常数矩阵,它的元素一般是时间t的函数,是一个nn所以eAt也称为状态转移矩阵,记为(t,(t)eAtX(0X(t的转移矩阵,而(tt)0X(t0X(tXAXX(t(tX(0X(t(tt0X(t0,在tX(0)X10以此为初始条件,且已知(t,那么在t

X X 20X

)X11(t)X

X X 21xt00若已知

,那么t

X

)X12

)X

X X

22X(0(t1或(t2X(t1X(t2若以tt1X(t1是初始状态从t1转移到t2的状态将为:X(t2)=(t2t1)X(t1将式(2-8)x(t2)(t2t1)(t1

x(0x(t1x(t2比较式(2-9)和(2-11)可知转移矩阵(或矩阵指数)

)

或eA(t2t1e

e

x(t0,求得任意时刻t的状)(t)()(t或eAte

eA(t

这就是组合性质,即从0,0t(t0)[0()][t()](t(tt)I或eA(tt)

它意味着状态矢量从时刻t又转移到时刻t,显然状态矢量是不变的[(t)]1(t或[eAt]1e

转移矩阵的逆意味着时间的逆转,利用这个性质,可以在已知x(t)的情况下求出小于时刻tx(t0(t0t(tA(t(tA

Ae

eAt

即(t)或eAt矩阵与A矩阵是可以交换的对于方阵AB(nn)ABBAeAte

eAB)tABBAeAte

eAB)t

0 AA=∧=

eAt(t)

n0 t enAT1ATeAt(t)T

0T

ent0A=∧=

0n0eAt1At1A2t21Antn X(t)(tt)X(t)xxtT1ITT1ATt1T1A2Tt2 1T1AnTtn 1211

12t

0 2! 1 1

2t2

2! I

t

n 0

12t21t12t2 1

2! 2!

n!

12t

12t2 22

21 2 1t12t2 1ntn

0

2!

n!

ent

entT[T1eAtT]T1

0

T T1T T ent

ent A 0 AJ

, 1

n1101 0101 00 00 eJt(t)et eAtIAt1At)21At)3

t

A

t

12!

1

(n1(n1t

(nt10t1

0 11

0 0

01 01 A

1

0

设t(n1)!t(n1)!2 (n1)!t1t

0

1t 1t

(n

1 1 t1(n1t1t1

(n2)! et

(n et 1ABBA的条件下eAB)teAteBt X 解:

0

0 00 0 000

ABBA 0

0又知,eAt ,注:A e

eBtIBt1B2t2

1 0

1 3

1 0 t

t2

t3

t4 0

2! 2

3! 0

4! 4112t214t4 t13t3

sin

sintcost t 3t3 2t2 4t4

sinxx 注:级数

cosx e

0

sint(t)eAteBt etsin costet etsint

t

sintetsin etcost sin cost 例2:已知X 解 sIAs

0 s

s s

s

s

(s)2

(s)22sI

(s)22 s s (s)22 (s)22 eatsin(sa)2k

s eatcos(sa)2k 1

1

et etsint

t

sint(t)

(sI

etsin etcost sin cost 一.(t)或eAt的计算(状态转移矩阵的计算根据(t)或eAt的定义直接计eAt1At1A2t21Antn1:A

1解 eAt1At1A2t

Aktk k 1 12teAt t

13 3

3 1 1 1t 13 1 3t 3 32 33! 0 1 3t 3 1 3t 72 7 36 0 1

13t 1

76

3t 72

5t t3t27t3t3t27t37

22t3t2

t32612613t t2 t3 AT1ATTA变换为对角线矩阵的变换阵。eAtTetT2:AIA2

1

23212

1,

1TP P P12,APP01 P 1 22 1P11P11

P21,

P11

2,则P

3

P

P

1 1

21

21

1P122P12

P22,

1

3

2P

P

2 2

22

22

1

2 1TP P ,T1 2

1 1 1

1 1 0 2

2

3

20T1AT,1, 2

1

0

1 1

0 1eAtTetT1

2 2

2

e2t

2

e2t

1 2et

ete2t

2t

2

2t

P56JT1AT,根据式(2-18)eAtTeJtT3:A

1;求e 1 解:IA

1

1,

2,J

00

0p11

p11

1p21

21

p31p21p11,p31p21,2p115p214p31

P1P

1P254PP1,所以P

21P21P2AP2p12

0p12

p11

p-

1

=22

22

21

p12p221,p22p321,p322p125p224p32取 0,

1,

2

32P23P3p13

0p132

1p23 23

2p13p23,2p23p33,p332p135p234 1,

2,

4

T

2,det1

24+0+2-1-0-4=1,adjT

2

1T1

1

1=

1

1

1

1

0 JT1AT=

11

1

2

1

2= ∴eJt

et

000e2t

2

s 0eAt

0 0 s 0 s

ssIA1 s 0 s

(s (s (s1)(s

s

(s1)(s (s1)2(s2)2 (s (s1)2 (s2)1sIA1

0 0

e2tJ

e

还需求出变换矩阵T和T1eAtTeJtT

0p12 P

P,

1

1

22

22

22

p12p22 p2p5p4 当 1时,

0,

1

0

TT012,1=531At121 t2(e2tet利用拉氏反变换法求eeAt(t)L1[(sIA)1

X(tAX(tX(0)X00sX(sX(0AX(s)(sIAX(s)X(0)X,左乘(sIA1000X(ssIA)1 X(tL1[(sIA)100

X(t)eAt

,t

eAtL1[(sIA102-4:A0

试用拉氏反变换法求e解 sIA

1s(s3)sssI(sIA)sI

s(s1)(s (s (s1)(s (s2e

e

e

e eAtL1[sIA]1

2e

e

2t应用-定理求e(1)f(A)An An1aAaI An An1 An2 aAaIAn1

AI 同 An1AAn An An1aA2a1100 1100

An1

An2aA

An1aA2a

)An1

)An2

)A

n1a0以此类推An1An2都可以

An1,

AI在定义式(2-7)中eAt1At

A2t2

Aktk,用(1)An次及neAt1At

A2t2

(n

An1tn1

Antn

(n

An1tn1

(t)An1

(t)An2a(t)A

1010已知状态转移矩阵(t)的情况下,如何确定系统矩阵A,方法有A证明:因为(t)A(t)A(t)(t)(t)1(t),1(t)1(t),故有A(t)(t)A证明:因为(t)eAt,当t0A(tt0由上式可以求出矩阵A例:已知系统的状态转移矩阵,试求系统矩阵A

(t) (1

(12t)e2t

A(t)(t) (4 (48t)e2t (1

(12t)e2t

A

(4 (48t)e2t t

(1

t

s

s

(sIA)1L(t)

s (s (s (s (s2)2 s4 (s s (s2)2 (s (s2)2 s s 0

(sIA)

s 4 0 (s

(s2)2

s

s

s4 (s (s2)2 A 12-5:A

求eAt表示式中的ai(tAIA2

3 定理有A23A2I A23AA3

A(3A2I)

2A3(3A2I)2A7AA4AA3A(7A6I)7A26A7(3A2I)6A15A…A22eAt1At1A2t21A3t31A4t4 1At1(3A2I)t21(7A6I)t31(15A14I)t4 (t3t27t315t4 )A(1t2t314t4 a1(t)Aa0∴a(t)=t3t27t315t4,a(t)=1t2t314t4 ai(t上例求ai(t只是对(2-22)加深理解,并说明ai是时间t的函数,实际上不宜计算ai(t,一则是得不到ai(t)的解析表达式,二则是当维数较高时,将造成计算上的繁琐。下面给出计算ai(t)的一般公式。A0a(t)0

n11e1t1a1(t)1

n1

e2t

n n

n1

t

AA是可以互换的,因此也23,从而有:a(t)a

(t)n1

01a(t)a(t) (t)n101 a(t)a(t) (t)n1 上式对a0

a2

23A的特征值均相同,为1时,

t

1

e1

(t)

(n

(n1

n2

(t)

(n

e1 =

(n1)(n2)n3

aa

(n

1t2e 1 11 1

证明:同上(P60)a(t)a(t)a

(t)n1

上式对1求导数,有a(t)2a

(n

(t)n2 再对1求导数有

(t)

(n1)(n

(t)n3t211(n (t)t由上面的n个方程对ai(t)求解,即得式(2-24A 1

eAt2-

3, 解:已知1=-1,2=-2,为互异根a

1e1t 11et

1et 2ete2t101

2

e2t

e2t

1e2t ete2t (2ete2t) 2et 2et2et 2et

2e2t2et

2

A,(t) tA

2

et 12

2e2tet

t

2-7:A

t10

2 14 1,求eAt

1解 IA 12132重根部分按式(2-24)处理,非重根部分按式(2-23)a0 a 1

1 1

213213

2

1a

et t

2

adjA

2

2e

10 10

1323

1

12

e eAta(t)Ia(t)Aa(t

1 4

2tet 3tet2et tetete2t2(e2tettet 3tet5et tet2et2e2t 3tet8et tet3et4e2t

2tete2t,

3tet2et2e2t,

tetet1212XAXY(t)CX

d[eAtX(t)]eAtBu(t)d(eAtX

eAt

de

X

At

eAt

e

对上式从0到t积分dtd

teABu(0 t eAX()

eABu(0teAtX(t)X(0)eABu(0teAtX(t)X(0)eABu(0t两边同乘eAt,即eAte

1X(t)eAtX(0eA(tBu()d,而e0

(t)tX(t)(t)X(0)(t)Bu(0如果从t0tX(t)(tt0)X(t0)

(t)Bu(

x1

1x10u,Y 0x

3x

2 t

2

eax0X(t)eAt0

eA(tBu()d0

eaxdx C先求(t,已知(t)eAt

2et

et 2et

et2e2tu(t)1(tB0X(0)x1

x tX(t)(t)X(0)(t)Bu(02et

et

x(0)

(t)Bu(02et et2e2tx20 (2ete2t)x(0)(ete2t)x

t

2e(t)e2(t

e(t)e2(t

0(2et2e2t)x(0)(et2e2t)x 0

2e(t)2e2(t

e(t)2e2(t) (2ete2t)x(0)(ete2t)x

t

e(t)e2(t)

(2et2e2t)x(0)(et2e2 x(0)0

e(t)2e2(t)t e(t)de2(t)d

12t

x(t)

et

1 1

0 x2 t

t e(t)d2e2(t)d

0y(t)CX(t)

0x1(t)x(t)

1et1x x 脉冲响应时;当u(tK(tX(0X时X(teAtXeAt 阶跃响应时;当u(tK1(tX(0X时X(teAtXA1(eAt 斜坡响应时;当u(tKt1(tX(0X时X(teAtX[A2eAt1 K——与u(tu(t)

tt

X(0) te(t)e2(t X(t)(t)B

e(t)2e2(t)0t=

te(t)d0

0 e2(t

e(t)d

2e2(t)d et=

ede2t0

e2d

e注 xeaxdxe

(ax1)

aet

ed

2t0

e2de te =

(1)t

2t4

(21) 00

te(t

t

00et00

(1)t

2t4

(21)t 00000e te

(t1)

[4

(2t1)1(01)]4=(t1)et(1)2e2t

4

(2t1)

1(0 1t3

e2tet

X(t)=

t x1(t)

31t

1xy(t)CX(t)x

0 作业:2.4(2,2.5(2)(4),2.6附:伴随方前面讨论的是系统自由响应问题,假定初始条件已知X(0)(t0。现在是某一时刻tX(t)(t)X X(0)1(t)X设

T1

T(t)1(t)对t取导(t)

T(t)1(t)T(t)1(t)X(t)(t)X(t) [T(t)T(t)A](t)若(t)0T(t)T(t)(t)AT

乘法定理AT]T

(

BT

Z(tAZ(t,上式中的(t

Z(t)(t)Z

1(t))33求得系统的转移矩阵(t1tX(0Z(tATZ(tX33

例:

A 1

Z(t)

(t)L1{[sIA]1}

2et 2et2e2t=et e2t

et

et2e2t1(t)T

2et

et 2etX(0)1(t)X

et2e2ts

s 1

(s1)(s (s1)(s2)L1{

}L1 (s1)(s (s1)(s2)

(利用部分分式解2

22

t t

2tL1s

s

s

s2

1s1

s

1s1

2s2

et

et2e2t= s =1(s1)(s

s(s(s3)(s(s1)(s

s

s

2a2

(s(s(s

11s∴(s1)(s2)

s1

s2 =

(s1)(s s

s2(s2(s(s1)(s

s1

b2

2(s2(s(s1)(s

21 (s1)(s

2s1

s3 (s1)(s

s

sc1c2

s1(s1(s(s1)(s1(s2)

111∴(s1)(s2)

s1

1s (s1)(sd

ss(ss(s(s1)(s

ds

s1

1d2

s(s2)s(s2)(s1)(s2)

21 (s1)(s

1s1

s§2-4状态转移矩阵的性一.讨论状态转移矩阵的性质就是讨论矩阵指数eAt的性 (t2t1)(t1t0)(t2t0 (tt)(tt)eA(t2t1eA(t1 1(t)

A(t2t1t1t0)=eA(t2t0)=(tt(t)eAt,(t)e (t,t)1(t,

eAt(eAt)1

1(0)

t,te0(t,t0)A(t)(t,t0

XAX设t00X(0)

yX(s)(sIA)1X(0)(sI-A)1Bu(s)(sIA)1XsIA)1But注:x(teA(tt0)eA(tBu(

x(t)ty(t)CeA(tBud(拉氏反变换得出)输入为(ty的输出为系统的脉冲响应h(t0

h(t)(t)=

h(t)=0

(t)h(t)d=(t)h(t)n1h(iT)T(tiT n当n0 n

i1,2,3,n1∴h(t)CeAt h(t)L1[C(sIA)1f(t在处连续,如果有另一个函数(t(t)(t)=lim0

tt

(t)df(t)(t)d

t[t1,t2则称(t为Dalta1,故又称为单位系统在t0时刻的r个输入均为单位脉冲函数(tt0,即Ui(t)ei(tt0

ei1第ii=1,2…,X(t00时,在tt0H(tX(t)(tt0)X(t0)

t(t)Bu(X(t00D0

X(t)(t)Bu(0 Y(t)C(t)Bu()d=C(t)Bei(tt0)d=C(tt0

hi(tt0令t

h(t)C(t

t

thi(t当t

hi(t)系统t时刻的输出仅与t以前的输入有关,而不取决于t以后的输入H(t)=h1(t

h2(t

hr(t

C(t

C(t)Ber=C(tH(t)

er]

C(t

tt设0CeAt

tH(t)

t令t0

Y(t)CeAtX(t0)H(t)u((t0)(t)etY(t)H(t)u(H(t)ceAtk1u(t)

2

K是与u(tk kX(t)X(t)eAtXeAt0Y(t)CeAttX(t)eAt Y(t)CeAtX0CH(t)()KdCH(tX(t)eAt0tX(t)eAtX0eA(t)Bu(tX00X(t)eA(tBu()deAtB(t)KeAt0rr

u(t)K(t)

tt

K

kT与u Y(t)CeAtX0H(t)u()dCeAtX0[CeA(t)BK tCeAtX0CeAteA0te0t

AdIt

1At2

1A2t3 AA1

eAdA1[At0

A2t2

A3t3A1[(IAt1A2t21A3t3)I A1eAt0A1(eAtIX00

Y(t)CeAteA0

CeAt[A1(eAtI[CeAtA1eAtCeAtCA1[IeAt]BKCA1[eAtI0或 X(t)eAtXA1(eAtI0Y

u(t)

ttK

k

X(t)XrtrY(t)C(tt0)X(t0)C(t)Bu(tCeA(tt0)X(t0)H(t)u(tCeAtX0H(t)u(0tCeAtX0CeA(t)Bu(0tCeAtX0CeAteA0

eAteABKdeAt(IA A22

eAt t

1 1 33244A3t5 1A2t2)A21A2t2A3t33A4t44

At若A2存在,将上式改写teAteABKd(IAt0

A5t5A2(1A2t21A3t31A4t4)BKA2(eAtI 0Y(t)CeAtXCA2(eAtI000X(t)eAtXA2(eAtIAt)BKeAtX[A2(eAt1)00

u(t)2

t

tK

k

X(0)r0Y(t)CeAtr0

CA3(eAtIAt1A2t22假 H(t)CeAtH(t000H(s)LH(t)H(t)estdt[CeAtBestdt]C[eAtBestdt]C(sIA)1B000L(eAt)eAtestdt(sI0

即eAtL1[(sI1:

X

1X

y

eAt

2et

1et12et

et2e2t

At1

2et

et

11 11

112et

et2e2t=2ete2t2et

ete2tet2e2t=e2t

e2t2e2t=e2t2e2te2t

=T

1C~CTC

1

1

3B B

11AT1AT

0~e

0

作业 e2t ~

~

e

03 3

H CeAt 1

e2t H(t)h(t)

e2t

2x10(t

y

0x1

H(t

3x

2x2

2

2

2

2(1e3teAt(t)L1[(sIA)1]L1

L1

0s(s3) 0 s

s3

0

3tH(t)CeAtB

3

030

3(1 2

§2-5离散时间系统状态方程的先介绍用递推法(迭代法X(k1)GX(k)

X(k Xk这是一阶矩阵差分方程的解, 一差分方X(k1)0.2X(k) k=0,1,2,…,X(0)0,u(k)k

X(1)0.2X(0)2u(0)21k

X(2)0.2X(1)2u(1)0.222k

X(3)0.2X(2)2u(2)0.21.6210.322k

X(4)0.2X(3)2u(3)0.21.68210.3362这种算法适用于计算机计算,应该X(k)已知u(k)已知

X(k1)GX(k)y(k1)CX 当k0当k X(1)GX(0)当k X(2)GX(1)Hu(1)G2X(0)GHu(0)当k X(3)GX(2)Hu(2)G3X(0)G2Hu(0)GHu(1)从k1

X(k)GX(k1)Hu(k1)GkX(0)Gk1Hu(0)GHu(k2)Hu(kkX(k)GkX(0) GkJ1Hu(j

(k1,2,3,)(j1,2,3,,k1)很明显,X(kX(0ujj1,2,3,k1k个时刻的状态,只与此采样时刻以前的输入采样X(k1)GXF(k)y(k)CTX(k)X

GG2

0 0

u(0)u(1)注:用矢量矩阵形式表示

X(0)

X k

k

k

G

Hu(kX1(k1)X2(k)X2(k1)X3(k)…Xn1(k1)Xn(k)Xn(k1)a0X1(k)a1X2(k)an1Xn(k)y(k)X1(k)

hn1

n2X(k1) X(k)u(k0001 0001 h1

an1

y(k) hn

0X(k)hn1bn1

h0b0a0bna1bn1an1b1b00式中Gk(或Gkh)相当于连续系统中的(t)eAt(或(tt)eA(tt0)0阵(t)ek,它是满足(k1)G(k),(0)I的唯一的矩阵。利用状态转移矩阵(k将前式可写成kX(k)(k)X(0) (kj1)Hu(j

性质有1(k)(k)k X(k)(k)X(0) (j)Hu(kjj

ky(k)C(k)X(0) (kj1)Hu(jk y(k)C(k)X(0) (j)Hu(kjjkh

(h)[(GkhkX(k)GkhX(h) Gkj1Hu(j或z

kX(k)(kh)X(h) (kj1)Hu(jX(k1)GX(k)

zzX(z)zX(0)GX(z)(zIG)X(z)zX(0)X(z)(zIG)1zX(0)(zIG)1

zXX(k)L1[(zIG)1zX(0)]L1[(zIG)1(k)X(0)GkX(0)L1[(zIG)1zXGk(k)L1[(zIG)1k(kj1)Hu(j)L1[(zIG)1jk X(k)GkX(0) Gkj1Hu(j要获得采样瞬时之间的状态和输出,只需在此采样周期内,即kTtk

内,令tkTT(k)T,(0X(k)T(T)X(kT)

(T)dHu(kTk首先, Gkj1Hu(j)的z变换,kjk

k

k[Gkj1Hu(j)]

Gkj1Hu(j)zk

zkjGkj1Hu(j)zj

k

j

k

j[Gk1Hu(0)zkGk2Hu(1)zkGk3Hu(2)zkk(Hz1GHz2G2Hz3)[u(0)u(1)z1u(2)z2(IGz1G2z2)Hz1[u(k)zkk(IGz1)1Hz1u(k)zk

(IGz1)1z1[zI[zIG]1k∴L1[zIG]1Hu(z)] Gkj1Hu(j

k0GkX(k1)GX(k

G 1

H

1当k1

u(k)1X(k

X(k)(k)X(0)L1[zIG]1u(z)

z

X(0)1

u(k)

(k0

11

z 先求:(k)L1[(zIG)1z]L1

zL1

z 1

(z0.2)(z0.8)

z(k)L1zz

z z

z3

z

z

z0.2

z 1 4(0.2)k

5(0.2)k5(0.8)k(k)30.8(0.2)k

(0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论