广东省广州市越秀区实验中学2022年高一上数学期末学业水平测试试题含解析_第1页
广东省广州市越秀区实验中学2022年高一上数学期末学业水平测试试题含解析_第2页
广东省广州市越秀区实验中学2022年高一上数学期末学业水平测试试题含解析_第3页
广东省广州市越秀区实验中学2022年高一上数学期末学业水平测试试题含解析_第4页
广东省广州市越秀区实验中学2022年高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

13/142022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.要得到函数的图象,只需要将函数的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位2.若函数分别是上的奇函数、偶函数,且满足,则有()A. B.C. D.3.已知矩形,,,将矩形沿对角线折成大小为的二面角,则折叠后形成的四面体的外接球的表面积是A. B.C. D.与的大小有关4.已知,求的值()A. B.C. D.5.若,则终边在()A.第一、三象限 B.第一、二象限C.第二、四象限 D.第三、四象限6.下列函数既是定义域上的减函数又是奇函数的是A. B.C. D.7.已知是锐角,那么是()A.第一象限角 B.第二象限角C.小于180°的正角 D.第一或第二象限角8.已知命题“,使”是假命题,则实数的取值范围是()A. B.C. D.9.函数f(x)=|x3|•ln的图象大致为()A. B.C. D.10.已知,,且,则A.2 B.1C.0 D.-1二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.12.已知函数,(1)______(2)若方程有4个实数根,则实数的取值范围是______13.已知为直角三角形的三边长,为斜边长,若点在直线上,则的最小值为__________14.函数的定义域是__________,值域是__________.15.已知函数(,)的部分图象如图所示,则的值为三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数的图象经过点其中(1)求a的值;(2)若,求x的取值范围.17.如图,在平行四边形中,设,.(1)用向量,表示向量,;(2)若,求证:.18.已知定理:“若、为常数,满足,则函数的图象关于点中心对称”.设函数,定义域为.(1)试求的图象对称中心,并用上述定理证明;(2)对于给定的,设计构造过程:、、、.如果,构造过程将继续下去;如果,构造过程将停止.若对任意,构造过程可以无限进行下去,求的取值范围.19.已知函数,,设(其中表示中的较小者).(1)在坐标系中画出函数的图像;(2)设函数的最大值为,试判断与1的大小关系,并说明理由.(参考数据:,,)20.已知,且为第二象限角(1)求的值;(2)求值.21.已知函数(其中且)是奇函数.(1)求的值;(2)若对任意的,都有不等式恒成立,求实数的取值范围.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】因为函数,要得到函数的图象,只需要将函数的图象向右平移个单位本题选择B选项.点睛:三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同2、D【解析】函数分别是上的奇函数、偶函数,,由,得,,,解方程组得,代入计算比较大小可得.考点:函数奇偶性及函数求解析式3、C【解析】由题意得,在二面角内的中点O到点A,B,C,D的距离相等,且为,所以点O即为外接球的球心,且球半径为,所以外接球的表面积为.选C4、A【解析】利用同角三角函数的基本关系,即可得到答案;【详解】,故选:A5、A【解析】分和讨论可得角的终边所在的象限.【详解】解:因为,所以当时,,其终边在第三象限;当时,,其终边在第一象限.综上,的终边在第一、三象限.故选:A.6、C【解析】根据函数的单调性与奇偶性对选项中的函数进行判断即可【详解】对于A,f(x)=|x|,是定义域R上的偶函数,∴不满足条件;对于B,f(x),在定义域(﹣∞,0)∪(0,+∞)上是奇函数,且在每一个区间上是减函数,不能说函数在定义域上是减函数,∴不满足条件;对于C,f(x)=﹣x3,在定义域R上是奇函数,且是减函数,∴满足题意;对于D,f(x)=x|x|,在定义域R上是奇函数,且是增函数,∴不满足条件故答案为:C【点睛】本题主要考查函数的单调性和奇偶性,意在考查学生对这些知识的掌握水平和分析推理能力.7、C【解析】由题知,故,进而得答案.【详解】因为是锐角,所以,所以,满足小于180°的正角.其中D选项不包括,故错误.故选:C8、B【解析】原命题等价于恒成立,故即可,解出不等式即可.【详解】因为命题“,使”是假命题,所以恒成立,所以,解得,故实数的取值范围是故选:B9、A【解析】判断函数的奇偶性和对称性,利用特殊点的函数值是否对应进行排除即可【详解】f(-x)=|x3|•ln=-|x3|•ln=-f(x),则函数f(x)是奇函数,图象关于原点对称,排除B,D,f()=ln=ln<0,排除C,故选A【点睛】本题主要考查函数图象的识别和判断,利用函数奇偶性和特殊值进行排除是解决本题的关键10、D【解析】∵,∴∵∴∴故选D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、3【解析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取人数为【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题12、①-2②.【解析】先计算出f(1),再根据给定的分段函数即可计算得解;令f(x)=t,结合二次函数f(x)性质,的图象,利用数形结合思想即可求解作答.【详解】(1)依题意,,则,所以;(2)函数的值域是,令,则方程在有两个不等实根,方程化为,因此,方程有4个实数根,等价于方程在有两个不等实根,即函数的图象与直线有两个不同的公共点,在同一坐标系内作出函数的图象与直线,而,如图,观察图象得,当时,函数与直线有两个不同公共点,所以实数的取值范围是.故答案为:-2;13、4【解析】∵a,b,c为直角三角形中的三边长,c为斜边长,∴c=,又∵点M(m,n)在直线l:ax+by+2c=0上,∴m2+n2表示直线l上的点到原点距离的平方,∴m2+n2的最小值为原点到直线l距离的平方,由点到直线的距离公式可得d==2,∴m2+n2的最小值为d2=4,故答案为4.14、①.②.【解析】解不等式可得出原函数的定义域,利用二次函数的基本性质可得出原函数的值域.详解】对于函数,有,即,解得,且.因此,函数的定义域为,值域为.故答案为:;.15、【解析】先计算周期,则,函数,又图象过点,则,∴由于,则.考点:依据图象求函数的解析式;三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)根据函数过点代入解析式,即可求得的值;(2)由(1)可得函数的解析式,结合函数的单调性求出x的取值范围.【详解】解:(1)∵函数的图象经过点,即,可得;(2)由(1)得,即,,【点睛】本题考查待定系数法求函数解析式,以及由指数函数的单调性解不等式,属于基础题.17、(1),.(2)证明见解析【解析】(1)根据向量的运算法则,即可求得向量,;(2)由,根据向量的运算法则,求得,即可求解.【小问1详解】解:在平行四边形中,由,,根据向量的运算法则,可得,.【小问2详解】解:因为,可得,所以.18、(1),证明见解析;(2).【解析】(1)计算出的值,由此可得出结论;(2)分、、三种情况讨论,求出函数的值域,根据题意可得出关于实数的不等式组,由此可求得实数的取值范围.【详解】(1),由已知定理得,的图象关于点成中心对称;(2),当时,若,由基本不等式可得,若,由基本不等式可得.此时,函数的值域为,当时,的值域为,当时,的值域为,因为构造过程可以无限进行下去,对任意恒成立或,由此得到.因此,实数的取值范围是.【点睛】关键点点睛:本题考查函数的新定义问题,解本题的关键在于对实数的取值进行分类讨论,求出函数的值域,根据题意得出所满足的不等式组求解.19、(1)见解析;(2)见解析.【解析】(1)根据(其中表示中的较小者),即可画出函数的图像;(2)由题意可知,为函数与图像交点的横坐标,即,设,根据零点存在定理及函数在上单调递增,且为连续曲线,可得有唯一零点,再由函数在上单调递减,即可得证.试题解析:(1)作出函数的图像如下:(2)由题意可知,为函数与图像交点的横坐标,且,∴.设,易知即为函数零点,∵,,∴,又∵函数在上单调递增,且为连续曲线,∴有唯一零点∵函数在上单调递减,∴,即.20、(1)cos,(2)【解析】(1)通过三角恒等式先求,再求即可;(2)先通过诱导公式进行化简,再将,的值代入即可得结果.【小问1详解】因为sin=,所以,且是第二象限角,所以cos=,从而【小问2详解】原式=21、(1)(2)【解析】(1)根据恒成立,计算可得的值;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论