黑龙江省齐齐哈尔市“四校联盟”2022年数学高一上期末质量跟踪监视模拟试题含解析_第1页
黑龙江省齐齐哈尔市“四校联盟”2022年数学高一上期末质量跟踪监视模拟试题含解析_第2页
黑龙江省齐齐哈尔市“四校联盟”2022年数学高一上期末质量跟踪监视模拟试题含解析_第3页
黑龙江省齐齐哈尔市“四校联盟”2022年数学高一上期末质量跟踪监视模拟试题含解析_第4页
黑龙江省齐齐哈尔市“四校联盟”2022年数学高一上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对于两条不同的直线l1,l2,两个不同的平面α,β,下列结论正确的A.若l1∥α,l2∥α,则l1∥l2 B.若l1∥α,l1∥β,则α∥βC若l1∥l2,l1∥α,则l2∥α D.若l1∥l2,l1⊥α,则l2⊥α2.将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,则函数在上的最大值和最小值分别为A. B.C. D.3.已知实数,,,则,,的大小关系为()A. B.C. D.4.已知扇形的半径为,面积为,则这个扇形的圆心角的弧度数为()A. B.C. D.5.某学校在数学联赛的成绩中抽取100名学生的笔试成绩,统计后得到如图所示的分布直方图,这100名学生成绩的中位数估值为A.80 B.82C.82.5 D.846.若不等式对一切恒成立,那么实数的取值范围是A. B.C. D.7.圆x2+y2+2x﹣4y+1=0的半径为()A.1 B.C.2 D.48.在内,使成立的的取值范围是A. B.C. D.9.函数的大致图像如图所示,则它的解析式是A. B.C. D.10.已知向量,,且,若,均为正数,则的最大值是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图像恒过定点___________12.函数的值域是____________,单调递增区间是____________.13.已知函数是偶函数,它在上是减函数,若满足,则的取值范围是___________.14.若存在常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立(或和恒成立),则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数b的取值范围是______15.设是R上的奇函数,且当时,,则__________16.函数的图象一定过定点P,则P点的坐标是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数,.用表示,中的较大者,记为.已知关于的不等式的解集为(1)求实数,的值,并写出的解析式;18.已知函数(a>0且a≠1).(1)若f(x)在[-1,1]上的最大值与最小值之差为,求实数a的值;(2)若,当a>1时,解不等式.19.某班级欲在半径为1米的圆形展板上做班级宣传,设计方案如下:用四根不计宽度的铜条将圆形展板分成如图所示的形状,其中正方形ABCD的中心在展板圆心,正方形内部用宣传画装饰,若铜条价格为10元/米,宣传画价格为20元/平方米,展板所需总费用为铜条的费用与宣传画的费用之和(1)设,将展板所需总费用表示成的函数;(2)若班级预算为100元,试问上述设计方案是否会超出班级预算?20.已知函数的最小正周期为(1)求当为偶函数时的值;(2)若的图象过点,求的单调递增区间21.已知集合(1)当时,求;(2)若,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】详解】A.若l1∥α,l2∥α,则两条直线可以相交可以平行,故A选项不正确;B.若l1∥α,l1∥β,则α∥β,当两条直线平行时,两个平面可以是相交的,故B不正确;C.若l1∥l2,l1∥α,则l2∥α,有可能在平面内,故C不正确;D.若l1∥l2,l1⊥α,则l2⊥α,根据课本的判定定理得到是正确的.故答案为D.2、A【解析】先化简f(x),再结合函数图象的伸缩变换,得到函数y=g(x)的解析式,进而根据正弦型函数最值的求法,求出函数的最大值与最小值【详解】∵函数,∴g(x)∵x∈∴4x∈∴当4x时,g(x)取最大值1;当4x时,g(x)取最小值故选A.3、A【解析】利用指数函数和对数函数的单调性比较a三个数与0、1的大小关系,由此可得出a、b、c大小关系.【详解】解析:由题,,,即有.故选:A.4、A【解析】由扇形的面积公式即可求解.【详解】解:设扇形圆心角的弧度数为,则扇形面积为,解得,因为,所以扇形的圆心角的弧度数为4.故选:A5、B【解析】中位数的左边和右边的直方图的面积相等,由此可以估计中位数的值,,中位数为,故选B.6、D【解析】由绝对值不等式解法,分类讨论去绝对值,再根据恒成立问题的解法即可求得a的取值范围【详解】根据绝对不等式,分类讨论去绝对值,得所以所以所以选D【点睛】本题考查了绝对值不等式化简方法,恒成立问题的基本应用,属于基础题7、C【解析】将圆的方程化为标准方程即可得圆的半径.【详解】由圆x2+y2+2x﹣4y+1=0化为标准方程有:,所以圆的半径为2.故选:C【点睛】本题考查圆的一般方程与标准方程的互化,并由此得出圆的半径大小,属于基础题.8、C【解析】直接画出函数图像得到答案.【详解】画出函数图像,如图所示:根据图像知.故选:.【点睛】本题考查了解三角不等式,画出函数图像是解题的关键.9、D【解析】由图易知:函数图象关于y轴对称,函数为偶函数,排除A,B;的图象为开口向上的抛物线,显然不适合,故选D点睛:识图常用方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题10、C【解析】利用向量共线定理可得2x+3y=5,再利用基本不等式即可得出【详解】∵,∴(3y-5)×1+2x=0,即2x+3y=5.∵x>0,y>0,∴5=2x+3y≥2,∴xy≤,当且仅当3y=2x时取等号故选C.点睛】本题考查了向量共线定理和基本不等式,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据指数函数过定点,结合函数图像平移变换,即可得过的定点.【详解】因为指数函数(,且)过定点是将向左平移2个单位得到所以过定点.故答案为:.12、①.②.【解析】先求二次函数值域,再根据指数函数单调性求函数值域;根据二次函数单调性与指数函数单调性以及复合函数单调性法则求函数增区间.【详解】因为,所以,即函数的值域是因为单调递减,在(1,+)上单调递减,因此函数的单调递增区间是(1,+).【点睛】本题考查复合函数值域与单调性,考查基本分析求解能力.13、【解析】由偶函数的性质可得,再由函数在上是减函数,可得,从而可求出的取值范围【详解】因为函数是偶函数,所以可化为,因为函数在上是减函数,所以,所以或,解得或,所以的取值范围是,故答案为:14、【解析】由已知可得、恒成立,利用一元二次不等式的解法和基本不等式即可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以当时,可得对任意的恒成立,则,即,所以;当时,对恒成立,即恒成立,又当时,,当且仅当即时等号成立,所以,综上所述,实数的取值范围是.故答案为:.15、【解析】由函数的性质得,代入当时的解析式求出的值,即可得解.【详解】当时,,,是上的奇函数,故答案为:16、(1,4)【解析】已知过定点,由向右平移个单位,向上平移个单位即可得,故根据平移可得到定点.【详解】由向右平移个单位,向上平移个单位得到,过定点,则过定点.【点睛】本题考查指数函数的图象恒过定点以及函数图象的平移问题.图象平移,定点也随之平移,平移后仍是定点.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)先由一元二次不等式的性质求出的值,再根据的图象得出其解析式;(2)将问题转化为,再解对数不等式得出实数的取值范围【小问1详解】∵的解集为,∴方程的两根分别为和2,由韦达定理可得:,解得,∴令,解得或,作出的图象如下图所示:则【小问2详解】由(1)得,当时,有最小值,即,∵,使得,∴只需即可,∴,∴,得,故18、(1)2或;(2)或.【解析】(1)对a值分类讨论,根据单调性列出最值之差表达式即可求解;(2)由函数的奇偶性、单调性脱去给定不等式中的法则“”,转化为一元二次不等式,求解即得.【详解】(1)①当,f(x)在[-1,1]上单调递增,,解得,②当时,f(x)在[-1,1]上单调递减,,解得,综上可得,实数a的值为2或.(2)由题可得定义域为,且,所以为上的奇函数;又因为,且,所以在上单调递增;所以,或,所以不等式的解集为或.【点睛】解抽象的函数不等式,分析对应函数的奇偶性和单调性是解决问题的关键.19、(1);(2)上述设计方案是不会超出班级预算【解析】(1)过点O作,垂足为H,用表示出OH和PH,从而可得铜条长度和正方形的面积,进而得出函数式;(2)利用同角三角函数的关系和二次函数的性质求出预算的最大值即可得出结论【详解】(1)过点O作,垂足为H,则,,正方形ABCD的中心在展板圆心,铜条长为相等,每根铜条长,,展板所需总费用为(2),当时等号成立.上述设计方案是不会超出班级预算【点睛】本题考查了函数应用,三角函数恒等变换与求值,属于中档题20、(1);(2).【解析】(1)由为偶函数,求出的值,结合的范围,即可求解;(2)由函数的周期求出值,将点代入解析式,结合的范围,求出,根据正弦函数的单调递增区间,整体代换,即可求出结论.【详解】(1)当为偶函数时,,;(2)函数的最小正周期为,,当时,,将点代入得,,,单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论