云南省保山市第一中学2022-2023学年高一数学第一学期期末学业水平测试试题含解析_第1页
云南省保山市第一中学2022-2023学年高一数学第一学期期末学业水平测试试题含解析_第2页
云南省保山市第一中学2022-2023学年高一数学第一学期期末学业水平测试试题含解析_第3页
云南省保山市第一中学2022-2023学年高一数学第一学期期末学业水平测试试题含解析_第4页
云南省保山市第一中学2022-2023学年高一数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.如图,在正中,均为所在边的中点,则以下向量和相等的是()A B.C. D.2.下列表示正确的是A.0∈N B.∈NC.–3∈N D.π∈Q3.对于任意的实数,定义表示不超过的最大整数,例如,,,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.半径为的半圆卷成一个圆锥,则它的体积为()A. B.C. D.5.若函数的值域为,则实数的取值范围是()A. B.C. D.6.已知函数,若,则实数a的值为()A.1 B.-1C.2 D.-27.一个空间几何体的三视图如图所示,则该几何体的表面积为A.7B.9C.11D.138.设集合U=R,,,则图中阴影部分表示的集合为()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤0}9.所有与角的终边相同的角可以表示为,其中角()A.一定是小于90°的角 B.一定是第一象限的角C.一定是正角 D.可以是任意角10.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则11.函数y=ax﹣2+1(a>0且a≠1)的图象必经过点A.(0,1) B.(1,1)C.(2,0) D.(2,2)12.已知全集,,,则等于()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.下列命题中正确的是__________.(填上所有正确命题的序号)①若,,则;②若,,则;③若,,则;④若,,,,则14.已知平面向量,的夹角为,,则=______15.某扇形的圆心角为2弧度,周长为4cm,则该扇形面积为_____cm216.已知,均为正数,且,则的最大值为____,的最小值为____.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知集合,(1)时,求及;(2)若时,求实数a的取值范围18.已知(1)作出函数的图象,并写出单调区间;(2)若函数有两个零点,求实数的取值范围19.设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=,(1)求φ;(2)求函数y=f(x)的单调增区间20.如图,某市准备在道路的一侧修建一条运动比赛道,赛道的前一部分为曲线段,该曲线段是函数,时的图象,且图象的最高点为,赛道的中部分为长千米的直线跑道,且,赛道的后一部分是以为圆心的一段圆弧(1)求的值和的大小;(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,矩形的一边在道路上,一个顶点在半径上,另外一个顶点在圆弧上,且,求当“矩形草坪”的面积取最大值时的值21.已知,.(1)求的值;(2)求的值;(3)求的值.22.化简求值:(1);(2)已知,求的值

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】根据相等向量的定义直接判断即可.【详解】与方向不同,与均不相等;与方向相同,长度相等,.故选:D.2、A【解析】根据自然数集以及有理数集的含义判断数与集合关系.【详解】N表示自然数集,在A中,0∈N,故A正确;在B中,,故B错误;在C中,–3∉N,故C错误;Q表示有理数集,在D中,π∉Q,故D错误故选A【点睛】本题考查自然数集、有理数集的含义以及数与集合关系判断,考查基本分析判断能力,属基础题.3、B【解析】根据充分必要性分别判断即可.【详解】若,则可设,则,,其中,,,即“”能推出“”;反之,若,,满足,但,,即“”推不出“”,所以“”是“”必要不充分条件,故选:B.4、A【解析】根据题意可得圆锥母线长为,底面圆的半径为,求出圆锥高即可求出体积.【详解】半径为半圆卷成一个圆锥,可得圆锥母线长为,底面圆周长为,所以底面圆的半径为,圆锥的高为,所以圆锥的体积为.故选:A.5、C【解析】因为函数的值域为,所以可以取到所有非负数,即的最小值非正.【详解】因为,且的值域为,所以,解得.故选:C.6、B【解析】首先求出的解析式,再根据指数对数恒等式得到,即可得到方程,解得即可;【详解】解:根据题意,,则有,若,即,解可得,故选:B7、B【解析】该几何体是一个圆上面挖掉一个半球,S=2π×3+π×12+=9π.8、D【解析】先求出集合A,B,再由图可知阴影部分表示,从而可求得答案【详解】因为等价于,解得,所以,所以或,要使得函数有意义,只需,解得,所以则由韦恩图可知阴影部分表示.故选:D.9、D【解析】由终边相同的角的表示的结论的适用范围可得正确选项.【详解】因为结论与角的终边相同的角可以表示为适用于任意角,所以D正确,故选:D.10、C【解析】对于A、B、D均可能出现,而对于C是正确的11、D【解析】根据a0=1(a≠0)时恒成立,我们令函数y=ax﹣2+1解析式中的指数部分为0,即可得到函数y=ax﹣2+1(a>0且a≠1)的图象恒过点的坐标解:∵当X=2时y=ax﹣2+1=2恒成立故函数y=ax﹣2+1(a>0且a≠1)的图象必经过点(2,2)故选D考点:指数函数的单调性与特殊点12、D【解析】利用补集和并集的定义即可得解.【详解】,,,,,.故选:D.【点睛】本题主要考查集合的基本运算,熟练掌握补集和并集的定义是解决本题的关键,属于基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、③【解析】对于①,若,,则与可能异面、平行,故①错误;对于②,若,,则与可能平行、相交,故②错误;对于③,若,,则根据线面垂直的性质,可知,故③正确;对于④,根据面面平行的判定定理可知,还需添加相交,故④错误,故答案为③.【方法点晴】本题主要考查线面平行的判定与性质、面面平行的性质及线面垂直的性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.14、【解析】=代入各量进行求解即可.【详解】=,故答案.【点睛】本题考查了向量模的求解,可以通过先平方再开方即可,属于基础题.15、1【解析】设该扇形的半径为,根据题意,因为扇形的圆心角为弧度,周长为,则有,,故答案为.16、①.②.##【解析】利用基本不等式的性质即可求出最大值,再通过消元转化为二次函数求最值即可.【详解】解:由题意,得4=2a+b≥2,当且仅当2a=b,即a=1,b=2时等号成立,所以0<ab≤2,所以ab的最大值为2,a2+b2=a2+(4-2a)2=5a2-16a+16=5(a-)2+≥,当a=,b=时取等号.故答案为:,.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),(2)【解析】(1)先求出集合,,,然后结合集合的交、并运算求解即可;(2)由,得,然后结合集合的包含关系对B是否为空集进行分讨论,即可求解【小问1详解】∵由,得由题可知∴或∴∴;【小问2详解】∵,∴分两种情况考虑:时,,解得:时,则,解得:所以a取值范围为18、(1)见解析;(2)【解析】(1)根据函数的表达式,作出函数的图象即可;(2)问题转化为求函数的交点问题,结合函数的图象,由数形结合得出即可【详解】解:(1)画出函数的图象,如图示:,由图象得:在,单调递增;(2)若函数有两个零点,则和有2个交点,结合图象得:【点睛】本题考查了指数函数、对数函数的图象及性质,考查函数的零点问题,是一道基础题19、(1)φ=-π;(2)单调增区间为.【解析】(1)∵x=是函数y=f(x)的图象的对称轴,∴sin(2×+φ)=±1,∴+φ=kπ+,k∈Z.∵-π<φ<0,∴φ=-.(2)y=sin(2x-)由2kπ-≤2x-≤2kπ+,k∈Z.得kπ+≤x≤kπ+,k∈Z.所以函数y=sin(2x-)的单调增区间为[kπ+,kπ+],k∈Z20、(1),;(2).【解析】(1)由题意可得,故,从而可得曲线段的解析式为,令x=0可得,根据,得,因此(2)结合题意可得当“矩形草坪”的面积最大时,点在弧上,由条件可得“矩形草坪”的面积为,然后根据的范围可得当时,取得最大值试题解析:(1)由条件得.∴.∴曲线段的解析式为.当时,.又,∴,∴.(2)由(1),可知.又易知当“矩形草坪”的面积最大时,点在弧上,故.设,,“矩形草坪”的面积为.∵,∴,故当,即时,取得最大值21、(1);(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论