江西省上饶市广丰县新实中学2022-2023学年高一上数学期末学业质量监测试题含解析_第1页
江西省上饶市广丰县新实中学2022-2023学年高一上数学期末学业质量监测试题含解析_第2页
江西省上饶市广丰县新实中学2022-2023学年高一上数学期末学业质量监测试题含解析_第3页
江西省上饶市广丰县新实中学2022-2023学年高一上数学期末学业质量监测试题含解析_第4页
江西省上饶市广丰县新实中学2022-2023学年高一上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.如图,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,动点P从点A出发,由A→D→C→B沿边运动,点P在AB上的射影为Q.设点P运动的路程为x,△APQ的面积为y,则y=f(x)的图象大致是()A. B.C. D.2.规定从甲地到乙地通话min的电话费由(元)决定,其中>0,[]是大于或等于的最小整数,如[2]=2,[2.7]=3,[2.1]=3,则从甲地到乙地通话时间为4.5min的电话费为()元A.4.8 B.5.2C.5.6 D.63.已知函数在上是增函数,则实数的取值范围是A. B.C. D.4.方程的解所在区间是()A. B.C. D.5.下列四个函数,最小正周期是的是()A. B.C. D.6.设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁A.{1,2}C.{2,4}7.若方程x2+2x+m2+3m=mcos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2 B.-2C.4 D.-48.设函数对的一切实数均有,则等于A.2016 B.-2016C.-2017 D.20179.四面体中,各个侧面都是边长为的正三角形,分别是和的中点,则异面直线与所成的角等于()A.30° B.45°C.60° D.90°10.已知a>0,那么2+3a+4A.23 B.C.2+23 D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.函数的单调减区间是_________.12.实数,满足,,则__________13.已知是定义在上的奇函数,当时,,函数如果对,,使得,则实数m的取值范围为______14.已知点A(3,2),B(﹣2,a),C(8,12)在同一条直线上,则a=_____.15.已知幂函数的图象过点,且,则a的取值范围是______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.设函数,函数,且,的图象过点及(1)求和的解析式;(2)求函数的定义域和值域17.已知求的值;求的值.18.如图,在三棱柱中,侧棱平面,、分别是、的中点,点在侧棱上,且,,求证:(1)直线平面;(2)平面平面.19.女排世界杯比赛采用局胜制,前局比赛采用分制,每个队只有赢得至少分,并同时超过对方分时,才胜局;在决胜局(第五局)采用分制,每个队只有赢得至少分,并领先对方分为胜.在每局比赛中,发球方赢得此球后可得分,并获得下一球的发球权,否则交换发球权,并且对方得分.现有甲乙两队进行排球比赛.(1)若前三局比赛中甲已经赢两局,乙赢一局.接下来的每局比赛甲队获胜的概率为,求甲队最后赢得整场比赛的概率;(2)若前四局比赛中甲、乙两队已经各赢两局比赛.在决胜局(第五局)中,两队当前的得分为甲、乙各分,且甲已获得下一发球权.若甲发球时甲赢分的概率为,乙发球时甲赢分的概率为,得分者获得下一个球的发球权.求甲队在个球以内(含个球)赢得整场比赛的概率.20.已知直线(1)求直线的斜率;(2)若直线m与平行,且过点,求m方程.21.在长方体ABCD-A1B1C1D1中,求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】结合P点的运动轨迹以及二次函数,三角形的面积公式判断即可【详解】解:P点在AD上时,△APQ是等腰直角三角形,此时f(x)=•x•x=x2,(0<x<2)是二次函数,排除A,B,P在DC上时,PQ不变,AQ增加,是递增的一次函数,排除C,故选D【点睛】本题考查了数形结合思想,考查二次函数以及三角形的面积问题,是一道基础题2、C【解析】计算,代入函数,计算即得结果.【详解】由,得.故选:C.3、A【解析】当时,在上是增函数,且恒大于零,即当时,在上是减函数,且恒大于零,即,因此选A点睛:1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”

函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反4、C【解析】判断所给选项中的区间的两个端点的函数值的积的正负性即可选出正确答案.【详解】∵,∴,,,,∴,∵函数的图象是连续的,∴函数的零点所在的区间是.故选C【点睛】本题考查了根据零存在原理判断方程的解所在的区间,考查了数学运算能力.5、C【解析】依次计算周期即可.【详解】A选项:,错误;B选项:,错误;C选项:,正确;D选项:,错误.故选:C.6、D【解析】∵M∩N={2,3},∴7、A【解析】令,由对称轴为,可得,解出,并验证即可.【详解】依题意,有且仅有1个实数根.令,对称轴为.所以,解得或.当时,,易知是连续函数,又,,所以在上也必有零点,此时不止有一个零点,故不合题意;当时,,此时只有一个零点,故符合题意.综上,.故选:A【点睛】关键点点睛:构造函数,求出的对称轴,利用对称的性质得出.8、B【解析】将换成再构造一个等式,然后消去,得到的解析式,最后可求得【详解】①②①②得,故选:【点睛】本题考查求解析式的一种特殊方法:方程组法.如已知,求,则由已知得,把和作为未知数,列出方程组可解出.如已知也可以用这种方法求解析式9、B【解析】利用中位线定理可得GE∥SA,则∠GEF为异面直线EF与SA所成的角,判断三角形为等腰直角三角形即可.【详解】取AC中点G,连接EG,GF,FC设棱长为2,则CF=,而CE=1∴EF=,GE=1,GF=1而GE∥SA,∴∠GEF为异面直线EF与SA所成的角∵EF=,GE=1,GF=1∴△GEF为等腰直角三角形,故∠GEF=45°故选:B.【点睛】求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.10、D【解析】利用基本不等式求解.【详解】因为a>0,所以2+3a+4当且仅当3a=4a,即故选:D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、##【解析】根据复合函数的单调性“同增异减”,即可求解.【详解】令,根据复合函数单调性可知,内层函数在上单调递减,在上单调递增,外层函数在定义域上单调递增,所以函数#在上单调递减,在上单调递增.故答案为:.12、8【解析】因为,,所以,,因此由,即两交点关于(4,4)对称,所以8点睛:利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合的思想求解.13、【解析】先求出时,,,然后解不等式,即可求解,得到答案【详解】由题意,可知时,为增函数,所以,又是上的奇函数,所以时,,又由在上的最大值为,所以,,使得,所以.故答案为【点睛】本题主要考查了函数的奇偶性的判定与应用,以及函数的最值的应用,其中解答中转化为是解答的关键,着重考查了转化思想,推理与运算能力,属于基础题.14、﹣8【解析】根据AC的斜率等于AB的斜率得到,解方程即得解.【详解】由题意可得AC的斜率等于AB的斜率,∴,解得a=﹣8.故答案为:-8【点睛】本题主要考查斜率的计算和三点共线,意在考查学生对这些知识的理解掌握水平.15、【解析】先求得幂函数的解析式,根据函数的奇偶性、单调性来求得的取值范围.【详解】设,则,所以,在上递增,且为奇函数,所以.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1),;(2),.【解析】(1)根据得出关于方程,求解方程即可;(2)根据的图象过点及,列方程组求得的解析式,可得,解不等式可求得定义域,根据二次函数的性质,配方可得,利用对数函数的单调性求解即可.【详解】(1)因为,;因为的图象过点及,所以,;(2)由,得函数的定义域为,即的值域为.【点睛】本题主要考查函数的解析式、定义域与值域,属于中档题.求函数值域的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法:首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的值域,⑤图象法:画出函数图象,根据图象的最高和最低点求最值.17、(1);(2)【解析】(1)作的平方可得,则,由的范围求解即可;(2)先利用降幂公式和切弦互化进行化简,得原式,将与代入求解即可【详解】(1)由题,,则,因为又,则,所以因此,(2)由题,由(1)可,代入可得原式【点睛】本题考查同角的平方关系式及完全平方公式的应用,考查降幂公式,考查切弦互化,考查运算能力18、(1)证明见解析;(2)证明见解析.【解析】(1)由中位线的性质得出,由棱柱的性质可得出,由平行线的传递性可得出,进而可证明出平面;(2)证明出平面,可得出,结合可证明出平面,再由面面垂直的判定定理即可证明出结论成立.【详解】(1)、分别为、的中点,为的中位线,,为棱柱,,,平面,平面,平面;(2)在三棱柱中,平面,平面,,又且,、平面,平面,而平面,故.又,且,、平面,平面,又平面,平面平面.【点睛】本题考查线面平行和面面垂直的证明,考查推理能力,属于中等题.19、(1);(2)【解析】(1)先确定甲队最后赢得整场比赛的情况,再分别根据独立事件概率乘法公式求解,最后根据互斥事件概率加法公式得结果;(2)先根据比赛规则确定x的取值,再确定甲赢得整场比赛的情况,最后根据独立事件概率乘法公式以及互斥事件概率加法公式得结果.【详解】(1)甲队最后赢得整场比赛的情况为第四局赢或第四局输第五局赢,所以甲队最后赢得整场比赛的概率为,(2)设甲队x个球后赢得比赛,根据比赛规则,x的取值只能为2或4,对应比分为两队打了2个球后甲赢得整场比赛,即打第一个球甲发球甲得分,打第二个球甲发球甲得分,此时概率为;两队打了4个球后甲赢得整场比赛,即打第一个球甲发球甲得分,打第二个球甲发球甲失分,打第三个球乙发球甲得分,打第四个球甲发球甲得分,或打第一个球甲发球甲失分,打第二个球乙发球甲得分,打第三个球甲发球甲得分,打第四个球甲发球甲得分,此时概率为.故所求概率为:20、(1);(2).【解析】(1)将直线变形为斜截式即可得斜率;(2)由平行可得斜率,再由点斜式可得结果.【详解】(1)由,可得,所以斜率为;(2)由直线m与平行,且过点,可得m的方程为,整理得:.21、(1)见解析;(2)见解析【解析】(1)推导出AB∥A1B1,由此能证明AB∥平面A1B1C.(2)推导出BC⊥AB,BC⊥BB1,从而BC⊥平面A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论