版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.若幂函数f(x)=xa图象过点(3,9),设,,t=-loga3,则m,n,t的大小关系是()A. B.C. D.2.设,,,则()A. B.C. D.3.已知函数满足∶当时,,当时,,若,且,设,则()A.没有最小值 B.的最小值为C.的最小值为 D.的最小值为4.下列四个函数中,与函数相等的是A. B.C. D.5.已知函数,且,,,则的值A.恒为正 B.恒为负C.恒为0 D.无法确定6.设全集,集合,,则A.{4} B.{0,1,9,16}C.{0,9,16} D.{1,9,16}7.半径为,圆心角为弧度的扇形的面积为()A. B.C. D.8.若点关于直线的对称点是,则直线在轴上的截距是A.1 B.2C.3 D.49.的图像是端点为且分别过和两点的两条射线,如图所示,则的解集为A.B.C.D.10.若扇形圆心角的弧度数为,且扇形弧所对的弦长也是,则这个扇形的面积为A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知定义在区间上的奇函数满足:,且当时,,则____________.12.函数f(x)=2x+x-7的零点在区间(n,n+1)内,则整数n的值为______13.若函数f(x)=的定义域为R,则实数a的取值范围是:_____________.14.命题“,”的否定形式为__________________________.15.若函数的值域为,则的取值范围是__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数,.(1)若不等式的解集为,求不等式的解集;(2)若函数在区间上有两个不同的零点,求实数的取值范围17.已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点.(1)求;(2)求的值.18.△ABC的顶点坐标分别为A(1,3),B(5,7),C(10,12),求BC边上的高所在的直线的方程19.已知函数的图象与的图象关于轴对称,且的图象过点.(1)若成立,求的取值范围;(2)若对于任意,不等式恒成立,求实数的取值范围.20.设全集,集合,(1)当时,求;(2)若,求实数的取值范围21.已知函数的部分图象如图所示,其中.(1)求值;(2)若角是的一个内角,且,求的值.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】由幂函数的图象过点(3,9)求出a的值,再比较m、n、t的大小【详解】幂函数f(x)=xa图象过点(3,9),∴3a=9,a=2;,∴m>n>t故选D【点睛】本题考查了幂函数的图象与性质的应用问题,是基础题2、C【解析】根据指数函数和对数函数的单调性判断,,的范围即可比较的大小.【详解】因为,即,,即,,即,所以,故选:C.3、B【解析】根据已知条件,首先利用表示出,然后根据已知条件求出的取值范围,最后利用一元二次函数并结合的取值范围即可求解.【详解】∵且,则,且,∴,即由,∴,又∵,∴当时,,当时,,故有最小值.故选:B.4、D【解析】分别化简每个选项的解析式并求出定义域,再判断是否与相等.【详解】A选项:解析式为,定义域为R,解析式不相同;B选项:解析式为,定义域为,定义域不相同;C选项:解析式为,定义域为,定义域不相同;D选项:解析式为,定义域为R,符合条件,答案为D.【点睛】函数相等主要看:(1)解析式相同;(2)定义域相同.属于基础题.5、A【解析】根据题意可得函数是奇函数,且在上单调递增.然后由,可得,结合单调性可得,所以,以上三式两边分别相加后可得结论【详解】由题意得,当时,,于是同理当时,可得,又,所以函数是上的奇函数又根据函数单调性判定方法可得在上为增函数由,可得,所以,所以,以上三式两边分别相加可得,故选A.【点睛】本题考查函数奇偶性和单调性的判断及应用,考查函数性质的应用,具有一定的综合性和难度,解题的关键是结合题意得到函数的性质,然后根据单调性得到不等式,再根据不等式的知识得到所求6、B【解析】根据集合的补集和交集的概念得到结果即可.【详解】全集,集合,,;,故答案为B.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算7、A【解析】由扇形面积公式计算【详解】由题意,故选:A8、D【解析】∵点A(1,1)关于直线y=kx+b的对称点是B(﹣3,3),由中点坐标公式得AB的中点坐标为,代入y=kx+b得①直线AB得斜率为,则k=2.代入①得,.∴直线y=kx+b为,解得:y=4.∴直线y=kx+b在y轴上的截距是4.故选D.9、D【解析】作出g(x)=图象,它与f(x)的图象交点为和,由图象可得10、A【解析】分析:求出扇形的半径,然后利用扇形的面积公式求解即可.详解:由题意得扇形的半径为:又由扇形面积公式得该扇形的面积为:.故选:A.点睛:本题是基础题,考查扇形的半径的求法、面积的求法,考查计算能力,注意扇形面积公式的应用.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】由函数已知的奇偶性可得、,再由对称性进而可得周期性得解.【详解】因为在区间上是奇函数,所以,,,得,因为,,所以的周期为..故答案为:.12、2【解析】因为函数f(x)的图象是连续不断的一条曲线,又f(0)=20+0-7=-6<0,f(1)=21+1-7=-4<0,f(2)=22+2-7=-1<0,f(3)=23+3-7=4>0所以f(2)·f(3)<0,故函数f(x)的零点所在的一个区间是(2,3),所以整数n的值为2.13、【解析】根据题意,有在R上恒成立,则,即可得解.【详解】若函数f(x)=的定义域为R,则在R上恒成立,则,解得:,故答案为:.14、##【解析】根据全称量词命题的否定直接得出结果.【详解】命题“”的否定为:,故答案为:15、【解析】由题意得三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)【解析】(1)根据二次函数与对应一元二次不等式的关系,求出a的值,再解不等式即可;(2)根据二次函数的图象与性质,列出不等式组,求出解集即可.【详解】(1)因为不等式的解集为,则方程的两个根为1和2,由根与系数的关系可得,,所以.由,得,即,解得或,所以不等式的解集为;(2)由题知函数,且在区间上有两个不同的零点,则,即,解得,所以实数的取值范围是【点睛】本题考查了二次函数的图象与性质的应用问题,也考查了不等式(组)的解法与应用问题,综合性较强,属中档题.17、(1);(2).【解析】(1)根据任意角三角函数的定义即可求解tanθ;(2)分式分子分母同时除以cos2θ化弦为切即可.【小问1详解】∵角的终边经过点,由三角函数的定义知,;【小问2详解】∵,∴.18、【解析】设所求直线方程的斜率为k.根据以,先求出高所在直线的斜率,进而利用点斜式即可求出;【详解】设所求直线方程的斜率为k.因为所求直线与直线BC垂直,所以所以垂线方程为即.【点睛】熟练掌握两条直线垂直与斜率的关系、点斜式是解题的关键19、(1);(2).【解析】利用已知条件得到的值,进而得到的解析式,再利用函数的图象关于轴对称,可得的解析式;(1)先利用对数函数的单调性,列出不等式组求解即可;(2)对于任意恒成立等价于,令,,利用二次函数求解即可.【详解】,,,;由已知得,即.(1)在上单调递减,,解得,的取值范围为.(2),对于任意恒成立等价于,,,令,,则,,当,即,即时,.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则的值域是值域的子集20、(1)或;(2)【解析】(1)由得到,然后利用集合的补集和交集运算求解.(2)化简集合,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版土特产产业扶贫合作开发合同3篇
- 2025年度互联网金融服务合作协议7篇
- 2025年厂房建筑安全质量监管承包合同4篇
- 二零二四年度影视机构录像内容保密协议3篇
- 2025年度跨境电子商务平台合作合同参考范本3篇
- 2025年度茶餐厅茶叶及茶叶原料供应协议3篇
- 森林草莓SMR基因家族调控果实成熟与抗灰霉病的功能初探
- 二零二五年度跨境电子商务平台合作框架协议4篇
- 二零二五版美术馆东馆馆舍租赁艺术展览技术支持合同4篇
- 2025年度机场接送车驾驶员聘用及服务标准合同4篇
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- 2024年城市轨道交通设备维保及安全检查合同3篇
- 【教案】+同一直线上二力的合成(教学设计)(人教版2024)八年级物理下册
- 湖北省武汉市青山区2023-2024学年七年级上学期期末质量检测数学试卷(含解析)
- 单位往个人转账的合同(2篇)
- 科研伦理审查与违规处理考核试卷
- GB/T 44101-2024中国式摔跤课程学生运动能力测评规范
- 高危妊娠的评估和护理
- 2024年山东铁投集团招聘笔试参考题库含答案解析
- 2023年高考全国甲卷数学(理)试卷【含答案】
- 数独题目A4打印版无答案
评论
0/150
提交评论