江西省南昌市2023届高一上数学期末预测试题含解析_第1页
江西省南昌市2023届高一上数学期末预测试题含解析_第2页
江西省南昌市2023届高一上数学期末预测试题含解析_第3页
江西省南昌市2023届高一上数学期末预测试题含解析_第4页
江西省南昌市2023届高一上数学期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.下列函数中,在区间上为增函数的是()A. B.C. D.2.下列各组函数表示同一函数的是()A., B.,C., D.,3.已知函数(,且)在上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是A. B.[,]C.[,]{} D.[,){}4.已知扇形的周长是6,圆心角为,则扇形的面积是()A.1 B.2C.3 D.45.下列指数式与对数式互化不正确的一组是()A.与 B.与C.与 D.与6.已知函数(其中)的图象如图所示,则函数的图像是()A. B.C. D.7.袋中装有5个小球,颜色分别是红色、黄色、白色、黑色和紫色.现从袋中随机抽取3个小球,设每个小球被抽到的机会均相等,则抽到白球或黑球的概率为A. B.C. D.8.下列命题中,真命题是.A.xR,x2+1=x B.xR,x2+1<2xC.xR,x2+1>x D.xR,x2+2x>19.已知,且,则的最小值为()A.3 B.4C.5 D.610.将函数fx的图象向右平移φφ>0个单位长度,得到函数gx=sinx+π6的图象.A.π6 B.C.2π3 D.11.设集合,则()A. B.C. D.12.已知函数,,的图象的3个交点可以构成一个等腰直角三角形,则的最小值为()A. B.C. D.二、填空题(本大题共4小题,共20分)13.直三棱柱ABC-A1B1C1,内接于球O,且AB⊥BC,AB=3.BC=4.AA1=4,则球O的表面积______14.圆:与圆:的公切线条数为____________.15.函数为奇函数,当时,,则______16.方程的解在内,则的取值范围是___________.三、解答题(本大题共6小题,共70分)17.设全集为,集合,(1)分别求,;(2)已知,若,求实数的取值范围构成的集合18.函数的部分图象如图所示.(1)求、及图中的值;(2)设,求函数在区间上的最大值和最小值19.已知函数其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为(1)求的解析式;(2)当,求的值域20.已知向量,(1)若,求的值;(2)若,,求的值域21.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点(1)求证:PA∥平面BMD;(2)求证:AD⊥PB;(3)若AB=PD=2,求点A到平面BMD的距离22.在中,顶点,,BC边所在直线方程为.(1)求过点A且平行于BC的直线方程;(2)求线段AB的垂直平分线方程.

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】利用基本初等函数的单调性可得出合适的选项.【详解】函数、在区间上为减函数,函数在区间上为增函数,函数在区间上不单调.故选:B.2、A【解析】根据相同函数的定义,分别判断各个选项函数的定义域和对应关系是否都相同,即可得出答案.【详解】解:对于A,两个函数的定义域都是,,对应关系完全一致,所以两函数是相同函数,故A符合题意;对于B,函数的定义域为,函数的定义域为,故两函数不是相同函数,故B不符题意;对于C,函数的定义域为,函数的定义域为,故两函数不是相同函数,故C不符题意;对于D,函数的定义域为,函数的定义域为,故两函数不是相同函数,故D不符题意.故选:A.3、C【解析】由在上单调递减可知,由方程恰好有两个不相等的实数解,可知,,又时,抛物线与直线相切,也符合题意,∴实数的取值范围是,故选C.【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解4、B【解析】设扇形的半径为r,弧长为l,先由周长求出半径和弧长,即可求出扇形的面积.【详解】设扇形的半径为r,弧长为l,因为圆心角为,所以.因为扇形的周长是6,所以,解得:.所以扇形的面积是.故选:B5、C【解析】根据指数式与对数式的互化关系逐一判断即可.【详解】,故正确;,故正确;,,故不正确;,故正确故选:C【点睛】本题主要考查了指数式与对数式的互化,属于基础题.6、A【解析】根据二次函数图象上特殊点的正负性,结合指数型函数的性质进行判断即可.【详解】由图象可知:,因为,所以由可得:,由可得:,由可得:,因此有,所以函数是减函数,,所以选项A符合,故选:A7、D【解析】分析:先求对立事件的概率:黑白都没有的概率,再用1减得结果.详解:从袋中球随机摸个,有,黑白都没有只有种,则抽到白或黑概率为选点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.8、C【解析】根据全称命题和特称命题的含义,以及不等式性质的应用,即可求解.【详解】对于A中,,所以,所以不正确;对于B中,,所以,所以不正确;对于C中,,所以,所以正确;对于D中,,所以不正确,故选C.【点睛】本题主要考查了全称命题与特称命题的真假判定,其中解答中正确理解全称命题和特称命题的含义,以及不等式性质的应用是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解析】依题意可得,则,再利用基本不等式计算可得;【详解】解:因为且,所以,所以当且仅当,即,时取等号;所以的最小值为故选:C【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方10、C【解析】根据正弦型函数图象变换的性质,结合零点的定义和正弦型函数的性质进行求解即可.【详解】因为函数fx的图象向右平移φφ>0个单位长度,得到函数gx=sinx+π6的图象,所以函数因为x=0是函数Fx所以F0=f0所以sinφ+π6=1解得:φ=2kπ(k∈Z),或φ=2kπ+2π3(k∈Z)当φ=2kπ(k∈Z)时,因为φ>0,所以φ的最小值是2π,当φ=2kπ+2π3(k∈Z)时,因为φ>0,所以φ综上所述φ的最小值是2π3故选:C11、D【解析】根据绝对值不等式的解法和二次函数的性质,分别求得集合,即可求解.【详解】由,解得,即,即,又由,即,所以.故选:D.12、C【解析】先根据函数值相等求出,可得,由此可知等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,由此可知,可得,据此即可求出结果.【详解】令和相等可得,即;此时,即等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,所以,即,当时,的最小值,最小值为故选:C二、填空题(本大题共4小题,共20分)13、【解析】利用三线垂直联想长方体,而长方体外接球直径为其体对角线长,容易得到球半径,得解【详解】直三棱柱中,易知AB,BC,BB1两两垂直,可知其为长方体的一部分,利用长方体外接球直径为其体对角线长,可知其直径为,∴=41π,故答案为41π【点睛】本题主要考查了三棱柱的外接球和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和空间想象能力.14、3【解析】将两圆的公切线条数问题转化为圆与圆的位置关系,然后由两圆心之间的距离与两半径之间的关系判断即可.【详解】圆:,圆心,半径;圆:,圆心,半径.因为,所以两圆外切,所以两圆的公切线条数为3.故答案为:315、【解析】根据对数运算和奇函数性质求解即可.【详解】解:因为函数为奇函数,当时,所以.故答案为:16、【解析】先令,按照单调性求出函数的值域,写出的取值范围即可.【详解】令,显然该函数增函数,,值域为,故.故答案为:.三、解答题(本大题共6小题,共70分)17、(1),或或;(2)【解析】(1)解一元二次不等式求得集合,由交集、并集和补集的概念计算可得结果;(2)根据集合的包含关系可构造不等式组求得结果.【详解】(1),则或,,或或;(2),,,解得:,则实数的取值范围构成的集合为.18、(1),,;(2),.【解析】(1)由可得出,结合可求得的值,由结合可求得的值,可得出函数的解析式,再由以及可求得的值;(2)利用三角恒等变换思想化简函数的解析式为,由可求得的取值范围,结合正弦函数的基本性质可求得函数在区间上的最大值和最小值.【详解】(1)由题图得,,,,又,,得,,又,得,.又,且,,,得,综上所述:,,;(2),,,所以当时,;当时,【点睛】本题考查利用图象求正弦型函数解析式中的参数,同时也考查了正弦型函数在区间上最值的计算,考查计算能力,属于中等题.19、(1);(2)【解析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入即可求得,把代入即可得到函数的解析式(2)根据x的范围进而可确定当的范围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域【详解】(1)由最低点为得A=2由x轴上相邻的两个交点之间的距离为得,即,由点在图象上的,,即,故又,故;(2),当,即时,取得最大值2;当,即时,取得最小值,故的值域为.20、(1)(2)【解析】(1)根据的坐标关系,得到,再代入即可求值.(2)用正弦、余弦,二倍角公式和辅助角公式化简,得到,根据,求出的值域.详解】(1)若,则,∴.∴.(2),∵,∴,∴,∴,∴的值域为【点睛】本题第一问主要考查向量平行的坐标表示和正切二倍角公式,考查计算能力.第二问主要考查正弦,余弦的二倍角公式和辅助角公式以及三角函数的值域问题,属于中档题.21、(1)详见解析;(2)详见解析;(3).【解析】(1)设AC和BD交于点O,MO为三角形PAC的中位线可得MO∥PA,再利用直线和平面平行的判定定理,证得结论(2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD,证得AD⊥BD,可证AD⊥平面PBD,从而证得结论(3)点A到平面BMD的距离等于点C到平面BMD的距离h,求出MN、MO的值,利用等体积法求得点C到平面MBD的距离h【详解】(1)证明:设AC和BD交于点O,则由底面ABCD是平行四边形可得O为AC的中点由于点M为PC的中点,故MO为三角形PAC的中位线,故MO∥PA.再由PA不在平面BMD内,而MO在平面BMD内,故有PA∥平面BMD(2)由PD⊥平面ABCD,可得PD⊥AD,平行四边形ABCD中,∵∠BCD=60°,AB=2AD,∴cos∠BADcos60°,∴AD⊥BD这样,AD垂直于平面PBD内的两条相交直线,故AD⊥平面PBD,∴AD⊥PB(3)若AB=PD=2,则AD=1,BD=AB•sin∠BAD=2,由于平面BMD经过AC的中点,故点A到平面BMD的距离等于点C到平面BMD的距离取CD得中点N,则MN⊥平面ABCD,且MNPD=1设点C到平面MBD的距离为h,则h为所求由AD⊥PB可得BC⊥PB,故三角形PBC为直角三角形由于点M为PC的中点,利用直角三角形斜边的中线等于斜边的一半,可得MD=MB,故三角形MBD为等腰三角形,故MO⊥BD由于PA,∴MO由VM﹣BCD=VC﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论