初中数学竞赛专题讲义 第六讲 一次不等式(不等式组)的解法_第1页
初中数学竞赛专题讲义 第六讲 一次不等式(不等式组)的解法_第2页
初中数学竞赛专题讲义 第六讲 一次不等式(不等式组)的解法_第3页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学竞赛专题讲义第六讲一次不等式(不等式组)的解法“”讲是系统学习不等式的基础.下面先介绍有关一次不等式的基本知识,然后进行例题分析.不等式的基本性质(()(性质(5))()((6)).区间概念在许多情况下,可以用不等式表示数集和点集.如果设a,b为实数,且a<b(1)满足不等式a<x<b的数x(a,b)1-4(a).(2)满足不等式a≤x≤b的数x[a,b]1-4(b).(3)满足不等式a<x≤b(a≤x<b)的x或[a,b)).如图1-4(c),(d).一次不等式的一般解法型:ax>b,或ax<b.为确定起见,下面仅讨论前一种形式.一元一次不等式ax>b.(3)当a=0时,用区间表示为(-∞,+∞).例1解不等式解两边同时乘以6得12(x+1)+2(x-2)≥21x-6,化简得-7x≥-14,,有.所以不等式的解为2求不等式的正整数解.正整数解,所以原不等式的正整数解为3解不等式分析与解因y2+1>0,所以根据不等式的基本性质有例4解不等式为x+2>7,解为x>5.这种错误没有考虑到使原不等式有意义的条件:x≠6.解将原不等式变形为解之得所以原不等式的解为x>5x≠6.例5已知2(x-2)-3(4x-1)=9(1-x),且y<x+9,试比较解首先解关于x的方程得x=-10.将x=-10代入不等式得y<-10+9,即y<-1.6解关于x的不等式:解显然a≠0,将原不等式变形为3x+3-2a2>a-2ax,即(3+2a)x>(2a+3)(a-1).说明对含有字母系数的不等式的解,也要分情况讨论.例7已知a,b为实数,若不等式(2a-b)x+3a-4b<0解由(2a-b)x+3a-4b<0得(2a-b)x<4b-3a.由②可求得将③代入①得所以b<0.于是不等式(a-4b)x+2a-3b>0可变形为因为b<0,所以下面举例说明不等式组的解法.不等式组的解是不等式组中所有不等式解的公共部分.况之一α<β;x<α;α1-5(a),(b),(c),(d)所示.若不等式组由两个以上不等式组成,其解可由下面两种方法求得:转化为求两两不等式解的公共部分.如求解不等式组的解一般是个区间,求解的关键是确定区间的上界与下界,如求解确定上界:由x<4,x<8,x<5,x<24,8,5,2上界,即x<2.确定下界:由x>-4,x>-6,x>0,x>-3.从-4,-6,0,-3中选最大的数作为下界,即x>0.确定好上、下界后,则原不等式组的解为:0<x<2.不等式组中不等式的个数越多,(2)越有优越性.例8解不等式组解原不等式组可化为解之得例9解关于x的不等式组解解①得4mx<11,③解②得 3mx>8.④(1)当m=0时,③,④变为原不等式组无解.(2)当m>0时,③,④变形为(3)当m<0时,由③,④得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论