利用频率估计概率全面版课件_第1页
利用频率估计概率全面版课件_第2页
利用频率估计概率全面版课件_第3页
利用频率估计概率全面版课件_第4页
利用频率估计概率全面版课件_第5页
已阅读5页,还剩85页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新课导入

同一条件下,在大量重复试验中,如果某随机事件A发生的频率稳定在某个常数p附近,那么这个常数就叫做事件A的概率.P(A)=mn新课导入同一条件下,在大量重复试验中,如果某随机事件1问题(两题中任选一题):2.掷一次骰子,向上的一面数字是6的概率是_______

.1.某射击运动员射击一次,命中靶心的概率是_______.命中靶心与未命中靶心发生可能性不相等试验的结果不是有限个的16各种结果发生的可能性相等试验的结果是有限个的等可能事件问题(两题中任选一题):2.掷一次骰子,向上的一面数字是6的2某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?观察在各次试验中得到的幼树成活的频率,谈谈你的看法.估计移植成活率移植总数(n)成活数(m)108成活的频率0.8()50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897是实际问题中的一种概率,可理解为成活的概率.某林业部门要考查某种幼树在一定条件下的移植成活率,应采用3数学史实人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.

由频率可以估计概率是由瑞士数学家雅各布·伯努利(1654-1705)最早阐明的,因而他被公认为是概率论的先驱之一.频率稳定性定理数学史实人们在长期的实践中发现,在随机试验中,由于众多微4估计移植成活率由下表可以发现,幼树移植成活的频率在__左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植成活的概率为__.0.90.9移植总数(n)成活数(m)108成活的频率0.8()50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897估计移植成活率由下表可以发现,幼树移植成活的频率在__左5由下表可以发现,幼树移植成活的频率在__左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植成活的概率为__.0.90.9移植总数(n)成活数(m)108成活的频率0.8()50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.8971.林业部门种植了该幼树1000棵,估计能成活_______棵.2.我们学校需种植这样的树苗500棵来绿化校园,则至少向林业部门购买约_____棵.900556由下表可以发现,幼树移植成活的频率在__左右摆动,并且随651.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率()损坏柑橘质量(m)/千克柑橘总质量(n)/千克nm完成下表,0.1010.0970.0970.1030.1010.0980.0990.103某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?

为简单起见,我们能否直接把表中的500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?利用你得到的结论解答下列问题:51.5450044.5745039.2440035.3237根据频率稳定性定理,在要求精度不是很高的情况下,不妨用表中的最后一行数据中的频率近似地代替概率.51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率()损坏柑橘质量(m)/千克柑橘总质量(n)/千克nm0.1010.0970.0970.1030.1010.0980.0990.103

为简单起见,我们能否直接把表中的500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?完成下表,利用你得到的结论解答下列问题:根据频率稳定性定理,在要求精度不是很高的情况下,不妨用表81.一水塘里有鲤鱼、鲫鱼、鲢鱼共1000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼_______尾,鲢鱼_______尾.3102702.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5000名中学生,并在调查到1000名、2000名、3000名、4000名、5000名时分别计算了各种颜色的频率,绘制折线图如下:做一做1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1000尾,一渔民通过多次9(1)随着调查次数的增加,红色的频率如何变化?(2)你能估计调查到10000名同学时,红色的频率是多少吗?估计调查到10000名同学时,红色的频率大约仍是40%左右.

随着调查次数的增加,红色的频率基本稳定在40%左右.(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?

红、黄、蓝、绿及其它颜色的生产比例大约为4:2:1:1:2.(1)随着调查次数的增加,红色的频率如何变化?(2)你能估103.如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300次中,有100次是落在不规则图形内.【拓展】

你能设计一个利用频率估计概率的实验方法估算该不规则图形的面积的方案吗?(1)你能估计出掷中不规则图形的概率吗?(2)若该长方形的面积为150,试估计不规则图形的面积.3.如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷11了解了一种方法-------用多次试验频率去估计概率体会了一种思想:用样本去估计总体用频率去估计概率弄清了一种关系------频率与概率的关系当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.了解了一种方法-------用多次试验频率体会了一种思想12

小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,掷中里面小圈小明胜,未掷入大圈内不算,你认为游戏公平吗?为什么?3m2m小红和小明在操场上做游戏,他们先在地上画了半径分别为13利用频率估计概率全面版课件14

教学目标过程与方法

当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。知识与能力

通过实验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力。教学目标过程与方法当事件的试验结果不是有限个或结果发15

通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯。在活动中进一步发展合作交流的意识和能力。教学目标情感态度与价值观通过具体情境使学生体会到概率是描述不确定事件16教学重难点教学重点

理解当试验次数较大时,试验频率稳定于理论概率。教学难点对概率的理解。教学重难点教学重点理解当试验次数较大时,试验频17

某林业部门要考察某种幼树在一定条件的移植成活率,应该用什么具体做法?问题1某林业部门要考察某种幼树在一定条件的18分析:幼苗移植成活率是实际问题中的一种概率。这个实际问题中的移植试验不属于各种结果可能性相等的类型,所以成活率要由频率去估计。在同样条件下,大量地对这种幼苗进行移植,并统计成活情况,计算成活的频率。如果随着移植棵数n的越来越大,频率越来越稳定于某个常数,那么这个常数就可以被当作成活率的近似值。下表是一张模拟的统计表,请填出表中的空缺,并完成表后的填空。分析:190.9050.9230.8830.940.8970.9050.9230.8830.940.89720

一个学习校小组有6名男生3名女生。老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取。你能设计一种试验来估计“被抽取的3人中有2名男生1名女生”的概率吗?从表可以发现,幼苗移植成活的频率在()左右摆动,并且随着统计数据的增加,这种规律愈加明显,所以估计幼树移植成活的概率为()。0.90.9一个学习校小组有6名男生3名女生。老师要从小组的学生21则估计抛掷一枚硬币正面朝上的概率为__0.5

事件发生的概率与事件发生的频率有什么联系和区别?则估计抛掷一枚硬币正面朝上的概率为__0.5事22则估计油菜籽发芽的概率为___0.9则估计油菜籽发芽的概率为___0.9232.某射击运动员在同一条件下练习射击,结果如下表所示:射击次数n102050100200500击中靶心次数m8194492178452击中靶心频率m/n(1)计算表中击中靶心的各个频率并填入表中.(2)这个运动员射击一次,击中靶心的概率多少0.80.950.880.920.890.940.92.某射击运动员在同一条件下练习射击,结果如下表所示:射击次24普查为了一定的目的,而对考察对象进行全面的调查,称为普查;频数在考察中,每个对象出现的次数;频率而每个对象出现的次数与总次数的比值称为频率.总体所要考察对象的全体,称为总体,个体而组成总体的每一个考察对象称为个体;抽样调查从总体中抽取部分个体进行调查,这种调查称为抽样调查;样本从总体中抽取的一部分个体叫做总体的一个样本;知识要点普查为了一定的目的,而对考察对象进行全面的调查,称为普查;25必然事件不可能事件可能性0½(50%)1(100%)不可能发生可能发生必然发生随机事件(不确定事件)必然事件不可能事件可能性026概率事件发生的可能性,也称为事件发生的概率.必然事件发生的概率为1(或100%),

记作P(必然事件)=1;不可能事件发生的概率为0,

记作P(不可能事件)=0;随机事件(不确定事件)发生的概率介于0~1之间,即0<P(不确定事件)<1.如果A为随机事件(不确定事件),

那么0<P(A)<1.概率事件发生的可能性,也称为事件发生的概率.必然事件发生27用列举法求概率的条件:(1)实验的所有结果是有限个(n)(2)各种结果的可能性相等.

当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时.又该如何求事件发生的概率呢?用列举法求概率的条件:(1)实验的所有结果是有限个(n)28

某林业部门有考查某种幼树在一定条件下的移植成活率,应采取什么具体做法?

某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘时(去掉坏的),每千克大约定价为多少元?问题1问题2某林业部门有考查某种幼树在一定条件下的移植成活率,应29

上面两个问题,都不属于结果可能性相等的类型.移植中有两种情况活或死.它们的可能性并不相等,事件发生的概率并不都为50%.柑橘是好的还是坏的两种事件发生的概率也不相等.因此也不能简单的用50%来表示它发生的概率.应该如何做呢?翻到课本157页.上面两个问题,都不属于结果可能性相等的类型.移植中有30

在相同情况下随机的抽取若干个体进行实验,进行实验统计,并计算事件发生的频率,根据频率估计该事件发生的概率.

当试验次数很大时,一个事件发生频率也稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.知识要点在相同情况下随机的抽取若干个体进行实验,进行实验统计31例1.某种油菜籽在相同条件下的发芽试验结果表:

当试验的油菜籽的粒数很多时,油菜籽发芽的频率接近于常数0.9,于是我们说它的概率是0.9。例1.某种油菜籽在相同条件下的发芽试验结果表:当试32例2.

对某电视机厂生产的电视机进行抽样检测的数据如下:

抽取台数501002003005001000优等品数4092192285478954(1)计算表中优等品的各个频率;(2)该厂生产的电视机优等品的概率是多少?

0.80.920.960.950.9560.954概率是0.9频率例2.对某电视机厂生产的电视机进行抽样检测的数据如下:抽33课堂小结概率事件发生的可能性,也称为事件发生的概率.必然事件发生的概率为1(或100%),

记作P(必然事件)=1;不可能事件发生的概率为0,

记作P(不可能事件)=0;随机事件(不确定事件)发生的概率介于0~1之间,即0<P(不确定事件)<1.如果A为随机事件(不确定事件),

那么0<P(A)<1.课堂小结概率事件发生的可能性,也称为事件发生的概率.必然34

当试验次数很大时,一个事件发生频率也稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.当试验次数很大时,一个事件发生频率也稳定在相应的概率351.依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列举的方法表示有可能的闯关情况;(2)求出闯关成功的概率。课堂练习1.依据闯关游戏规则,请你探究“闯关游戏”的奥秘:课堂练习36左右解(1)所有可能的闯关情况:(左1,右1)(左1,右2);(左2,右1)(左2,右2)。(2)闯关成功的概率是。左右解(1)所有可能的闯关情况:(左1,右1)372.某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?分析:如果估计这个概率为0.1,则柑橘完好的概率为0.9。2.某水果公司以2元/千克的成本新进了10000千克柑橘,38解:根据估计的概率可以知道,在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克,完好柑橘的实际成本为设每千克柑橘的销价为x元,则应有(x-2.22)×9000=5000解得x≈2.8因此,出售柑橘时每千克大约定价为2.8元可获利润5000元。解:根据估计的概率可以知道,在10000千克柑橘中完好柑橘的393.如图,小明、小华用4张扑克牌(方块2、黑桃4、黑桃5、梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回。(1)若小明恰好抽到了黑桃4。①请在下边框中绘制这种情况的树状图;②求小华抽出的牌面数字比4大的概率。(2)小明、小华约定:若小明抽到的牌面数字比小华的大,则小明胜;反之,则小明负。你认为这个游戏是否公平?说明你的理由。3.如图,小明、小华用4张扑克牌(方块2、黑桃4、黑桃5、梅40黑桃5梅花5(4,黑桃5)(4,梅花5)小华抽出的牌比4大的概率是解:(1)黑桃5梅花5(4,黑桃5)(4,梅花5)小华抽出的牌比4大的41(2)公平,小明与小华抽到的牌的所有情况是(2,4);(2,黑桃5);(2,梅花5);(4,2);(4,黑桃5);(4,梅花5);(黑桃5,2);(黑桃5,4);(黑桃5,梅花5);(梅花5,2);(梅花5,4);(梅花5,黑桃5)。所有的小明胜出的概率等于小华胜出的概率=(2)公平,小明与小华抽到的牌的所有情况是(2,4);(2,42结束寄语:

概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.

从表面上看,随机现象的每一次观察结果都是偶然的,但多次观察某个随机现象,立即可以发现:在大量的偶然之中存在着必然的规律.结束寄语:43习题答案会稳定在某个常数附近.

略.

(1)略.习题答案会稳定在某个常数附近.44利用频率估计概率全面版课件45只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于“我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局,或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少,走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟!一生有多少属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁?长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时光不会因你而停留,你却会随着光阴而老去。有些事情注定会发生,有的结局早已就预见,那么就改变你可以改变的,适应你必须去适应的。面对幸与不幸,换一个角度,改变一种思维,也许心空就不再布满阴霾,头上就是一片蔚蓝的天。一生能有多少属于我们的时光,很多事情,很多人已经渐渐模糊。而能随着岁月积淀下来,在心中无法忘却的,一定是触动心灵,甚至是刻骨铭心的,无论是伤痛是欢愉。人生无论是得意还是失意,都不要错过了清早的晨曦,正午的骄阳,夕阳的绚烂,暮色中的朦胧。经历过很多世态炎凉之后,你终于能懂得:谁会在乎你?你又何必要别人去在乎?生于斯世,赤条条的来,也将身无长物的离开,你在世上得到的,失去的,最终都会化作尘埃。原本就不曾带来什么,所以也谈不到失去什么,因此,对自己经历的幸与不幸都应怀有一颗平常心有一颗平常心,面对人生小小的不如意或是飞来横祸就能坦然接受,知道人有旦夕祸福,这和命运没什么关系;有一颗平常心,面对台下的鲜花掌声和头上的光环,身上的浮名都能清醒看待。花不常开,人不常在。再热闹华美的舞台也有谢幕的时候;再奢华的宴席,悠扬的乐曲,总有曲终人散的时刻。春去秋来,我们无法让季节停留;同样如同季节一样无法挽留的还有我们匆匆的人生。谁会在乎你?生养我们的父母。纵使我们有千般不是,纵使我们变成了穷光蛋,唯有父母会依然在乎!为你愁,为你笑,为你牵挂,为你满足。这风云变幻的世界,除了父母,不敢在断言还会有谁会永远的在乎你!看惯太多海誓山盟的感情最后星流云散;看过太多翻云覆雨的友情灰飞烟灭。你春风得意时前呼后拥的都来锦上添花;你落寞孤寂时,曾见几人焦急赶来为你雪中送炭。其实,谁会在乎你?除了父母,只有你自己。父母待你再好,总要有离开的时日;再恩爱夫妻,有时也会劳燕分飞,孩子之于你,就如同你和父母;管鲍贫交,俞伯牙和钟子期,这样的肝胆相照,从古至今有几人?不是把世界想的太悲观,世事白云苍狗,要在纷纷扰扰的生活中,懂得爱惜自己。不羡慕如昙花一现的的流星,虽然灿烂,却是惊鸿一瞥;宁愿做一颗小小的暗淡的星子,即使不能同日月争辉,也有自己无可取代的位置其实,也不该让每个人都来在乎自己,每个人的人生都是单行道,世上绝没有两片完全相同的树叶。大家生活得都不容易,都有自己方向。相识就是缘分吧,在一起的时候,要多想着能为身边的人做点什么,而不是想着去得到和索取。与人为善,以直报怨,我们就会内心多一份宁静,生活多一份和谐没有谁会在乎你的时候,要学会每时每刻的在乎自己。在不知不觉间,已经走到了人生的分水岭,回望过去生活的点滴,路也茫茫,心也茫茫。少不更事的年龄,做出了一件件现在想来啼笑皆非的事情:斜阳芳草里,故作深沉地独对晚风夕照;风萧萧兮,渴望成为一代侠客;一遍遍地唱着罗大佑的《童年》,期待着做那个高年级的师兄;一天天地幻想,生活能轰轰烈烈。没有刀光剑影,没有死去活来,青春就在浑浑噩噩、懵懵懂懂中悄然滑过。等到发觉逝去的美好,年华的可贵,已经被无可奈何地推到了滚滚红尘。从此,青春就一去不回头。没有了幻想和冲动,日子就像白开水一样平淡,寂寞地走过一天天,一年年。涉世之初,还有几分棱角,有几许豪情。在碰了壁,折了腰之后,终于明白,生活不是童话,世上本没有白雪公主和青蛙王子,原本是一张白纸似的人生,开始被染上了光怪陆离的色彩。你情愿也罢,被情愿也罢,生存,就要适应身不由己,言不由衷的生活。人到中年,突然明白了许多:人生路漫漫,那是说给还不知道什么叫人生的人说的,人生其实很短暂,百年一瞬间;世事难预料,是至理名言,这一辈子,你遇见了谁,擦肩而过了谁,谁会是你真心的良朋益友,谁会和你牵手相伴一生,

只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自46新课导入

同一条件下,在大量重复试验中,如果某随机事件A发生的频率稳定在某个常数p附近,那么这个常数就叫做事件A的概率.P(A)=mn新课导入同一条件下,在大量重复试验中,如果某随机事件47问题(两题中任选一题):2.掷一次骰子,向上的一面数字是6的概率是_______

.1.某射击运动员射击一次,命中靶心的概率是_______.命中靶心与未命中靶心发生可能性不相等试验的结果不是有限个的16各种结果发生的可能性相等试验的结果是有限个的等可能事件问题(两题中任选一题):2.掷一次骰子,向上的一面数字是6的48某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?观察在各次试验中得到的幼树成活的频率,谈谈你的看法.估计移植成活率移植总数(n)成活数(m)108成活的频率0.8()50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897是实际问题中的一种概率,可理解为成活的概率.某林业部门要考查某种幼树在一定条件下的移植成活率,应采用49数学史实人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.

由频率可以估计概率是由瑞士数学家雅各布·伯努利(1654-1705)最早阐明的,因而他被公认为是概率论的先驱之一.频率稳定性定理数学史实人们在长期的实践中发现,在随机试验中,由于众多微50估计移植成活率由下表可以发现,幼树移植成活的频率在__左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植成活的概率为__.0.90.9移植总数(n)成活数(m)108成活的频率0.8()50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897估计移植成活率由下表可以发现,幼树移植成活的频率在__左51由下表可以发现,幼树移植成活的频率在__左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.所以估计幼树移植成活的概率为__.0.90.9移植总数(n)成活数(m)108成活的频率0.8()50472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.8971.林业部门种植了该幼树1000棵,估计能成活_______棵.2.我们学校需种植这样的树苗500棵来绿化校园,则至少向林业部门购买约_____棵.900556由下表可以发现,幼树移植成活的频率在__左右摆动,并且随5251.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率()损坏柑橘质量(m)/千克柑橘总质量(n)/千克nm完成下表,0.1010.0970.0970.1030.1010.0980.0990.103某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?

为简单起见,我们能否直接把表中的500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?利用你得到的结论解答下列问题:51.5450044.5745039.2440035.32353根据频率稳定性定理,在要求精度不是很高的情况下,不妨用表中的最后一行数据中的频率近似地代替概率.51.5450044.5745039.2440035.3235030.9330024.2525019.4220015.151500.10510.51000.1105.5050柑橘损坏的频率()损坏柑橘质量(m)/千克柑橘总质量(n)/千克nm0.1010.0970.0970.1030.1010.0980.0990.103

为简单起见,我们能否直接把表中的500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?完成下表,利用你得到的结论解答下列问题:根据频率稳定性定理,在要求精度不是很高的情况下,不妨用表541.一水塘里有鲤鱼、鲫鱼、鲢鱼共1000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼_______尾,鲢鱼_______尾.3102702.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5000名中学生,并在调查到1000名、2000名、3000名、4000名、5000名时分别计算了各种颜色的频率,绘制折线图如下:做一做1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1000尾,一渔民通过多次55(1)随着调查次数的增加,红色的频率如何变化?(2)你能估计调查到10000名同学时,红色的频率是多少吗?估计调查到10000名同学时,红色的频率大约仍是40%左右.

随着调查次数的增加,红色的频率基本稳定在40%左右.(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?

红、黄、蓝、绿及其它颜色的生产比例大约为4:2:1:1:2.(1)随着调查次数的增加,红色的频率如何变化?(2)你能估563.如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300次中,有100次是落在不规则图形内.【拓展】

你能设计一个利用频率估计概率的实验方法估算该不规则图形的面积的方案吗?(1)你能估计出掷中不规则图形的概率吗?(2)若该长方形的面积为150,试估计不规则图形的面积.3.如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷57了解了一种方法-------用多次试验频率去估计概率体会了一种思想:用样本去估计总体用频率去估计概率弄清了一种关系------频率与概率的关系当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.了解了一种方法-------用多次试验频率体会了一种思想58

小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,掷中里面小圈小明胜,未掷入大圈内不算,你认为游戏公平吗?为什么?3m2m小红和小明在操场上做游戏,他们先在地上画了半径分别为59利用频率估计概率全面版课件60

教学目标过程与方法

当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。知识与能力

通过实验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力。教学目标过程与方法当事件的试验结果不是有限个或结果发61

通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯。在活动中进一步发展合作交流的意识和能力。教学目标情感态度与价值观通过具体情境使学生体会到概率是描述不确定事件62教学重难点教学重点

理解当试验次数较大时,试验频率稳定于理论概率。教学难点对概率的理解。教学重难点教学重点理解当试验次数较大时,试验频63

某林业部门要考察某种幼树在一定条件的移植成活率,应该用什么具体做法?问题1某林业部门要考察某种幼树在一定条件的64分析:幼苗移植成活率是实际问题中的一种概率。这个实际问题中的移植试验不属于各种结果可能性相等的类型,所以成活率要由频率去估计。在同样条件下,大量地对这种幼苗进行移植,并统计成活情况,计算成活的频率。如果随着移植棵数n的越来越大,频率越来越稳定于某个常数,那么这个常数就可以被当作成活率的近似值。下表是一张模拟的统计表,请填出表中的空缺,并完成表后的填空。分析:650.9050.9230.8830.940.8970.9050.9230.8830.940.89766

一个学习校小组有6名男生3名女生。老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取。你能设计一种试验来估计“被抽取的3人中有2名男生1名女生”的概率吗?从表可以发现,幼苗移植成活的频率在()左右摆动,并且随着统计数据的增加,这种规律愈加明显,所以估计幼树移植成活的概率为()。0.90.9一个学习校小组有6名男生3名女生。老师要从小组的学生67则估计抛掷一枚硬币正面朝上的概率为__0.5

事件发生的概率与事件发生的频率有什么联系和区别?则估计抛掷一枚硬币正面朝上的概率为__0.5事68则估计油菜籽发芽的概率为___0.9则估计油菜籽发芽的概率为___0.9692.某射击运动员在同一条件下练习射击,结果如下表所示:射击次数n102050100200500击中靶心次数m8194492178452击中靶心频率m/n(1)计算表中击中靶心的各个频率并填入表中.(2)这个运动员射击一次,击中靶心的概率多少0.80.950.880.920.890.940.92.某射击运动员在同一条件下练习射击,结果如下表所示:射击次70普查为了一定的目的,而对考察对象进行全面的调查,称为普查;频数在考察中,每个对象出现的次数;频率而每个对象出现的次数与总次数的比值称为频率.总体所要考察对象的全体,称为总体,个体而组成总体的每一个考察对象称为个体;抽样调查从总体中抽取部分个体进行调查,这种调查称为抽样调查;样本从总体中抽取的一部分个体叫做总体的一个样本;知识要点普查为了一定的目的,而对考察对象进行全面的调查,称为普查;71必然事件不可能事件可能性0½(50%)1(100%)不可能发生可能发生必然发生随机事件(不确定事件)必然事件不可能事件可能性072概率事件发生的可能性,也称为事件发生的概率.必然事件发生的概率为1(或100%),

记作P(必然事件)=1;不可能事件发生的概率为0,

记作P(不可能事件)=0;随机事件(不确定事件)发生的概率介于0~1之间,即0<P(不确定事件)<1.如果A为随机事件(不确定事件),

那么0<P(A)<1.概率事件发生的可能性,也称为事件发生的概率.必然事件发生73用列举法求概率的条件:(1)实验的所有结果是有限个(n)(2)各种结果的可能性相等.

当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时.又该如何求事件发生的概率呢?用列举法求概率的条件:(1)实验的所有结果是有限个(n)74

某林业部门有考查某种幼树在一定条件下的移植成活率,应采取什么具体做法?

某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘时(去掉坏的),每千克大约定价为多少元?问题1问题2某林业部门有考查某种幼树在一定条件下的移植成活率,应75

上面两个问题,都不属于结果可能性相等的类型.移植中有两种情况活或死.它们的可能性并不相等,事件发生的概率并不都为50%.柑橘是好的还是坏的两种事件发生的概率也不相等.因此也不能简单的用50%来表示它发生的概率.应该如何做呢?翻到课本157页.上面两个问题,都不属于结果可能性相等的类型.移植中有76

在相同情况下随机的抽取若干个体进行实验,进行实验统计,并计算事件发生的频率,根据频率估计该事件发生的概率.

当试验次数很大时,一个事件发生频率也稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.知识要点在相同情况下随机的抽取若干个体进行实验,进行实验统计77例1.某种油菜籽在相同条件下的发芽试验结果表:

当试验的油菜籽的粒数很多时,油菜籽发芽的频率接近于常数0.9,于是我们说它的概率是0.9。例1.某种油菜籽在相同条件下的发芽试验结果表:当试78例2.

对某电视机厂生产的电视机进行抽样检测的数据如下:

抽取台数501002003005001000优等品数4092192285478954(1)计算表中优等品的各个频率;(2)该厂生产的电视机优等品的概率是多少?

0.80.920.960.950.9560.954概率是0.9频率例2.对某电视机厂生产的电视机进行抽样检测的数据如下:抽79课堂小结概率事件发生的可能性,也称为事件发生的概率.必然事件发生的概率为1(或100%),

记作P(必然事件)=1;不可能事件发生的概率为0,

记作P(不可能事件)=0;随机事件(不确定事件)发生的概率介于0~1之间,即0<P(不确定事件)<1.如果A为随机事件(不确定事件),

那么0<P(A)<1.课堂小结概率事件发生的可能性,也称为事件发生的概率.必然80

当试验次数很大时,一个事件发生频率也稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.当试验次数很大时,一个事件发生频率也稳定在相应的概率811.依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列举的方法表示有可能的闯关情况;(2)求出闯关成功的概率。课堂练习1.依据闯关游戏规则,请你探究“闯关游戏”的奥秘:课堂练习82左右解(1)所有可能的闯关情况:(左1,右1)(左1,右2);(左2,右1)(左2,右2)。(2)闯关成功的概率是。左右解(1)所有可能的闯关情况:(左1,右1)832.某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?分析:如果估计这个概率为0.1,则柑橘完好的概率为0.9。2.某水果公司以2元/千克的成本新进了10000千克柑橘,84解:根据估计的概率可以知道,在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克,完好柑橘的实际成本为设每千克柑橘的销价为x元,则应有(x-2.22)×9000=5000解得x≈2.8因此,出售柑橘时每千克大约定价为2.8元可获利润5000元。解:根据估计的概率可以知道,在10000千克柑橘中完好柑橘的853.如图,小明、小华用4张扑克牌(方块2、黑桃4、黑桃5、梅花5)玩游戏,他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回。(1)若小明恰好抽到了黑桃4。①请在下边框中绘制这种情况的树状图;②求小华抽出的牌面数字比4大的概率。(2)小明、小华约定:若小明抽到的牌面数字比小华的大,则小明胜;反之,则小明负。你认为这个游戏是否公平?说明你的理由。3.如图,小明、小华用4张扑克牌(方块2、黑桃4、黑桃5、梅86黑桃5梅花5(4,黑桃5)(4,梅花5)小华抽出的牌比4大的概率是解:(1)黑桃5梅花5(4,黑桃5)(4,梅花5)小华抽出的牌比4大的87(2)公平,小明与小华抽到的牌的所有情况是(2,4);(2,黑桃5);(2,梅花5);(4,2);(4,黑桃5);(4,梅花5);(黑桃5,2);(黑桃5,4);(黑桃5,梅花5);(梅花5,2);(梅花5,4);(梅花5,黑桃5)。所有的小明胜出的概率等于小华胜出的概率=(2)公平,小明与小华抽到的牌的所有情况是(2,4);(2,88结束寄语:

概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.

从表面上看,随机现象的每一次观察结果都是偶然的,但多次观察某个随机现象,立即可以发现:在大量的偶然之中存在着必然的规律.结束寄语:89习题答案会稳定在某个常数附近.

略.

(1)略.习题答案会稳定在某个常数附近.90利用频率估计概率全面版课件91只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于“我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局,或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开了又落了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论