版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
注、单调区间不能以“并集”出现。利用导数讨论函数单调的步骤:(1)求导数已知:的定义域D=f(x)y(2)解不等式得f(x)的单调递增区间;解不等式得f(x)的单调递减区间.(3)下结论注、单调区间不能以“并集”出现。利用导数讨论函数单调的步骤:13.3.2函数的极值与导数3.3.2函数的极值与导数2探究、
如图,①函数y=f(x)在A,B等点的函数值与这些点附近的函数值有什么关系?②y=f(x)在这些点的导数值是多少?aby=f(x)AB探究、如图,①函数y=f(x)在A,Baby=f(x)A3探究、
如图,①函数y=g(x)在横坐标为c,d,e,f,g,h等点的函数值与这些点附近的函数值有什么关系?②y=g(x)在这些点的导数值是多少?cdefoghxyy=g(x)探究、如图,①函数y=g(x)在横坐标cdefoghxy4函数极值的定义极大值点,极小值点统称为极值点.注:①函数的极大值、极小值未必是函数的最大值、最小值.
②极大值不一定小于极小值f(a)f(b)baBA函数极值的定义极大值点,极小值点统称为极值点.注:①函数的极5
一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f
(x0)>f(x),我们就说f
(x0)是函数f(x)的一个极大值,记作y极大值=f
(x0);如果对x0附近的所有的点,都有f
(x0)<f(x)
,我们就说f
(x0)是函数f(x)的一个极小值,记作y极小值=f
(x0).
极大值与极小值同称为极值.函数极值的定义
一般地,设函数f(x)在点x0附近有定义,如果对x6观察图像并类比函数的单调性与导数关系的研究方法,看极值与导数之间有什么关系?oa
x0bxy
xx0左侧
x0x0右侧
f(x)
f(x)
oax0bxy
xx0左侧
x0x0右侧
f(x)
f(x)增f(x)>0f(x)=0f(x)<0极大值减f(x)<0f(x)=0增减极小值f(x)>0请问如何判断f
(x0)是极大值或是极小值?左正右负为极大,右正左负为极小观察图像并类比函数的单调性与导数关系的研究方法7函数的极值与导数优秀课件8探索:
x=0是否为函数f(x)=x3的极值点?x
yOf(x)x3而x
=0不是该函数的极值点.f(x0)
=0x0
是可导函数f(x)的极值点x0左右侧导数异号x0
是函数f(x)
的极值点注意:f/(x0)=0是可导函数取得极值的必要不充分条件f(x)=3x2当f(x)=0时,x
=0,
f(x0)
=0探索:x=0是否为函数f(x)=x3的极值点?xyOf9请思考求可导函数的极值的步骤:①求导数
强调:要想知道
x0是极大值点还是极小值点就必须判断f(x0)=0左右侧导数的符号.注:导数等于零的点不一定是极值点.②
求方程=0的根,这些根也称为可能极值点;③列表检查在方程=0的根的左右两侧的符号,确定极值点请思考求可导函数的极值的步骤:①求导数强调:要想知道x010求下列函数的极值
求下列函数的极值11
案例分析函数
在时有极值10,则a,b的值为()A、或
B、或C、C案例分析函数C12
案例分析函数
在时有极值10,则a,b的值为()解:由题设条件得:解之得通过验证,a=3,b=-3不合要求注意代入检验案例分析函数解:解之得通过验证,a=3,b13可导函数y=f(x)的导数y/与函数值和极值之间的关系为()A、导数y/由负变正,则函数y由减变为增,且有极大值B、导数y/由负变正,则函数y由增变为减,且有极大值C、导数y/由正变负,则函数y由增变为减,且有极小值D、导数y/由正变负,则函数y由增变为减,且有极大值D练习可导函数y=f(x)的导数y/与函数值和极值之间的关系为(14本节课主要学习了哪些内容?1、极值的判定方法2、极值的求法注意点:2、f/(x0)=0是可导函数取得极值的必要不充分条件3、数形结合以及函数与方程思想的应用1、要想知道
x0是极大值点还是极小值点就必须判断f(x0)=0左右侧导数的正负.本节课主要学习了哪些内容?1、极值的判定方法2152.(2006年北京卷)已知函数在点处取得极大值5,其导函数的图像(如图)过点(1,0),(2,0),求:(1)的值;(2)a,b,c的值;.略解:(1)由图像可知:(2)注意:数形结合以及函数与方程思想的应用2.(2006年北京卷)已知函数在点处取得极大值5,16
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布]86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯]88.每个意念都是一场祈祷。――[詹姆士·雷德非]89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森]90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯]92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯]93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金]95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班]96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格]98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根]99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特]100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹]101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰]102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华]103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗]104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭]105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基]106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克]107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼]108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿]109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基]110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆]111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯]112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯]113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根·皮沙尔·史密斯]114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。――[阿萨·赫尔帕斯爵士]115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉·海兹利特]116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂]117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯]118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默]119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀]120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯]121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯]122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑]123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔]124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多]125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子]126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼]127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron]128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温]129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰·鲁斯金]函数的极值与导数优秀课件17注、单调区间不能以“并集”出现。利用导数讨论函数单调的步骤:(1)求导数已知:的定义域D=f(x)y(2)解不等式得f(x)的单调递增区间;解不等式得f(x)的单调递减区间.(3)下结论注、单调区间不能以“并集”出现。利用导数讨论函数单调的步骤:183.3.2函数的极值与导数3.3.2函数的极值与导数19探究、
如图,①函数y=f(x)在A,B等点的函数值与这些点附近的函数值有什么关系?②y=f(x)在这些点的导数值是多少?aby=f(x)AB探究、如图,①函数y=f(x)在A,Baby=f(x)A20探究、
如图,①函数y=g(x)在横坐标为c,d,e,f,g,h等点的函数值与这些点附近的函数值有什么关系?②y=g(x)在这些点的导数值是多少?cdefoghxyy=g(x)探究、如图,①函数y=g(x)在横坐标cdefoghxy21函数极值的定义极大值点,极小值点统称为极值点.注:①函数的极大值、极小值未必是函数的最大值、最小值.
②极大值不一定小于极小值f(a)f(b)baBA函数极值的定义极大值点,极小值点统称为极值点.注:①函数的极22
一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f
(x0)>f(x),我们就说f
(x0)是函数f(x)的一个极大值,记作y极大值=f
(x0);如果对x0附近的所有的点,都有f
(x0)<f(x)
,我们就说f
(x0)是函数f(x)的一个极小值,记作y极小值=f
(x0).
极大值与极小值同称为极值.函数极值的定义
一般地,设函数f(x)在点x0附近有定义,如果对x23观察图像并类比函数的单调性与导数关系的研究方法,看极值与导数之间有什么关系?oa
x0bxy
xx0左侧
x0x0右侧
f(x)
f(x)
oax0bxy
xx0左侧
x0x0右侧
f(x)
f(x)增f(x)>0f(x)=0f(x)<0极大值减f(x)<0f(x)=0增减极小值f(x)>0请问如何判断f
(x0)是极大值或是极小值?左正右负为极大,右正左负为极小观察图像并类比函数的单调性与导数关系的研究方法24函数的极值与导数优秀课件25探索:
x=0是否为函数f(x)=x3的极值点?x
yOf(x)x3而x
=0不是该函数的极值点.f(x0)
=0x0
是可导函数f(x)的极值点x0左右侧导数异号x0
是函数f(x)
的极值点注意:f/(x0)=0是可导函数取得极值的必要不充分条件f(x)=3x2当f(x)=0时,x
=0,
f(x0)
=0探索:x=0是否为函数f(x)=x3的极值点?xyOf26请思考求可导函数的极值的步骤:①求导数
强调:要想知道
x0是极大值点还是极小值点就必须判断f(x0)=0左右侧导数的符号.注:导数等于零的点不一定是极值点.②
求方程=0的根,这些根也称为可能极值点;③列表检查在方程=0的根的左右两侧的符号,确定极值点请思考求可导函数的极值的步骤:①求导数强调:要想知道x027求下列函数的极值
求下列函数的极值28
案例分析函数
在时有极值10,则a,b的值为()A、或
B、或C、C案例分析函数C29
案例分析函数
在时有极值10,则a,b的值为()解:由题设条件得:解之得通过验证,a=3,b=-3不合要求注意代入检验案例分析函数解:解之得通过验证,a=3,b30可导函数y=f(x)的导数y/与函数值和极值之间的关系为()A、导数y/由负变正,则函数y由减变为增,且有极大值B、导数y/由负变正,则函数y由增变为减,且有极大值C、导数y/由正变负,则函数y由增变为减,且有极小值D、导数y/由正变负,则函数y由增变为减,且有极大值D练习可导函数y=f(x)的导数y/与函数值和极值之间的关系为(31本节课主要学习了哪些内容?1、极值的判定方法2、极值的求法注意点:2、f/(x0)=0是可导函数取得极值的必要不充分条件3、数形结合以及函数与方程思想的应用1、要想知道
x0是极大值点还是极小值点就必须判断f(x0)=0左右侧导数的正负.本节课主要学习了哪些内容?1、极值的判定方法2322.(2006年北京卷)已知函数在点处取得极大值5,其导函数的图像(如图)过点(1,0),(2,0),求:(1)的值;(2)a,b,c的值;.略解:(1)由图像可知:(2)注意:数形结合以及函数与方程思想的应用2.(2006年北京卷)已知函数在点处取得极大值5,33
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰·B·塔布]86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔·卡内基]87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯]88.每个意念都是一场祈祷。――[詹姆士·雷德非]89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森]90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯]92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯]93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰·拉斯金]95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉·班]96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳]97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格]98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根]99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔·普劳斯特]100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹]101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰]102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华]103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗]104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉·彭]105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔·卡内基]106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰·罗伯克]107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳·厄尔曼]108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝·C·科尔顿]109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔·卡内基]110.每天安静地坐十五分钟·倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克·佛洛姆]111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯]112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯]113.人生的目的有二:先
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版英语八年级上册 期末补全对话练习
- 医用佐药产品供应链分析
- 2025全国注册监理工程师继续教育题库附答案
- 手摇铃乐器市场发展预测和趋势分析
- 包装用塑料膜产业运行及前景预测报告
- web前端开发技术2022-2023-1(百万)学习通超星期末考试答案章节答案2024年
- 宏微观经济学学习通超星期末考试答案章节答案2024年
- 马来语语法学习通超星期末考试答案章节答案2024年
- 推车运载工具用小脚轮产业规划专项研究报告
- 工业包装容器用木制盖子产业规划专项研究报告
- 六年级上册数学课件-4.1比的意义和性质 |西师大版(2014秋) (共11张PPT)
- SPECTRO直读光谱仪使用课件
- 消防安全知识模板
- 管理系统中计算机应用实践报告
- 湘教文艺版小学五年级音乐上册期末测试题
- 国开作业《公共部门人力资源管理》形考任务4:撰写课程学习总结(第1-9章权重25%)参考882
- 五星级酒店工程部标准化管理资料
- 晕厥护理查房(与“晕厥”相关共28张)课件
- 民族团结实践活动总结范文5篇
- 网店客服(第二版)整书电子教案完整版教学课件全套ppt教学教程最全课件最新
- 全国护士延续注册体检表-(正式)
评论
0/150
提交评论