




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知,,,则()A. B.C. D.2.某几何体的三视图如图所示,它的体积为()A.72π B.48πC.30π D.24π3.已知集合,则中元素的个数为A.1 B.2C.3 D.44.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是()A. B.C. D.5.两直线2x+3y-k=0和x-ky+12=0的交点在y轴上,那么k的值是A.-24 B.6C.±6 D.±246.已知,,,则()A. B.C. D.7.函数f(x)是定义在R上的奇函数,当x>0时,f(x)=﹣x+1,则当x<0时,f(x)等于()A.﹣x+1 B.﹣x﹣1C.x+1 D.x﹣18.已知定义在R上的函数是奇函数且满足,,数列满足,且,(其中为的前n项和).则A.3 B.C. D.29.下列函数值为的是()A.sin390° B.cos750°C.tan30° D.cos30°10.若函数的图像关于点中心对称,则的最小值为()A. B.C. D.11.函数A.是奇函数且在区间上单调递增B.是奇函数且在区间上单调递减C.是偶函数且在区间上单调递增D.是偶函数且在区间上单调递减12.已知是定义在区间上的奇函数,当时,.则关于的不等式的解集为A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知,且的终边上一点P的坐标为,则=______14.函数定义域为________.(用区间表示)15.若xlog23=1,则9x+3﹣x=_____16.已知函数是定义在上的奇函数,且当时,,则的值为__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数(1)试判断函数的奇偶性;(2)求函数的值域.18.设,,已知,求a的值.19.若函数自变量的取值区间为时,函数值的取值区间恰为,就称区间为的一个“罗尔区间”.已知函数是定义在上的奇函数,当时,.(1)求的解析式;(2)求函数在内的“罗尔区间”;(3)若以函数在定义域所有“罗尔区间”上的图像作为函数的图像,是否存在实数,使集合恰含有2个元素.若存在,求出实数的取值集合;若不存在,说明理由.20.已知函数(1)求函数图象的相邻两条对称轴的距离;(2)求函数在区间上的最大值与最小值,以及此时的取值21.已知定义在上的函数,其中,且(1)试判断函数的奇偶性,并证明你的结论;(2)解关于的不等式22.刘先生购买了一部手机,欲使用某通讯网络最近推出的全年免流量费用的套餐,经调查收费标准如下表:套餐月租本地话费长途话费套餐甲12元0.3元/分钟0.6元/分钟套餐乙无0.5元/分钟0.8元/分钟刘先生每月接打本地电话时间是长途电话的5倍(手机双向收费,接打话费相同)(1)设刘先生每月通话时间为x分钟,求使用套餐甲所需话费的函数及使用套餐乙所需话费的函数;
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】比较a、b、c与中间值0和1的大小即可﹒【详解】,,,∴﹒故选:A﹒2、C【解析】由题意,结合图象可得该几何体是圆锥和半球体的组合体,根据图中的数据即可计算出组合体的体积选出正确选项.由图知,该几何体是圆锥和半球体的组合体,球的半径是3,圆锥底面圆的半径是3,圆锥母线长为5,由圆锥的几何特征可求得圆锥的高为4,则它的体积.考点:由三视图求面积、体积3、A【解析】利用交集定义先求出A∩B,由此能求出A∩B中元素的个数【详解】∵集合∴A∩B={3},∴A∩B中元素的个数为1故选A【点睛】本题考查交集中元素个数的求法,是基础题,解题时要认真审题,注意交集定义的合理运用4、C【解析】根据已知定义,将问题转化为方程有解,然后逐项进行求解并判断即可.【详解】根据定义可知:若有不动点,则有解.A.令,所以,此时无解,故不是“不动点”函数;B.令,此时无解,,所以不是“不动点”函数;C.当时,令,所以或,所以“不动点”函数;D.令即,此时无解,所以不是“不动点”函数.故选:C.5、C【解析】两直线2x+3y-k=0和x+ky-12=0的交点在y轴上,令x=0,可得,解得k即可【详解】∵两直线2x+3y-k=0和x+ky-12=0的交点在y轴上,令x=0,可得,解得k=±6故选C【点睛】本题考查了两条直线的交点坐标,考查了推理能力与计算能力,属于基础题6、B【解析】分析】由指数函数和对数函数单调性,结合临界值可确定大小关系.【详解】,.故选:B.7、B【解析】当x<0时,,选B.点睛:已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.8、A【解析】由奇函数满足可知该函数是周期为的奇函数,由递推关系可得:,两式做差有:,即,即数列构成首项为,公比为的等比数列,故:,综上有:,,则:.本题选择A选项.9、A【解析】由诱导公式计算出函数值后判断详解】,,,故选:A10、C【解析】根据函数的图像关于点中心对称,由求出的表达式即可.【详解】因为函数的图像关于点中心对称,所以,所以,解得,所以故选:C【点睛】本题主要考查余弦函数的对称性,还考查了运算求解的能力,属于基础题.11、A【解析】由可知是奇函数,排除,,且,由可知错误,故选12、A【解析】分析:根据函数奇偶性的性质将不等式进行转化为一般的不等式求解即可详解:∵,函数f(x)为奇函数,∴,又f(x)是定义在[−1,1]上的减函数,∴,即,解得∴不等式的解集为故选A点睛:解题的关键是根据函数的奇偶性将不等式化为或的形式,然后再根据单调性将函数不等式化为一般的不等式求解,解题时不要忘了函数定义域的限制二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】先求解,判断的终边在第四象限,计算,结合,即得解【详解】由题意,故点,故终边在第四象限且,又故故答案为:14、【解析】由对数真数大于0,偶次根式被开方式大于等于0,列出不等式组求解即可得答案.【详解】解:由,得,所以函数的定义域为,故答案为:.15、【解析】由已知条件可得x=log32,即3x=2,再结合分数指数幂的运算即可得解.【详解】解:∵,∴x=log32,则3x=2,∴9x=4,,∴,故答案为:【点睛】本题考查了指数与对数形式的互化,重点考查了分数指数幂的运算,属基础题.16、-1【解析】因为为奇函数,故,故填.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)奇函数;(2).【解析】化简函数f(x)=log3(2-sinx)-log3(2+sinx)(1)利用函数的奇偶性的定义直接求解即可;(2)把分子分离常数,根据-1≤sinx≤1,求出函数的值域【详解】(1),的定义域为,则对中的任意都有,所以为上的奇函数;(2)令,,,
,,,
即值域为.【点睛】本题考查对数的运算性质,函数奇偶性的判断,对数函数的值域与最值,考查计算能力,属于中档题.18、-3【解析】根据,分和,讨论求解.【详解】解:因为,,且,所以当时,解得,此时,不符合题意;当时,解得或,若,则,不成立;若,则,成立;所以a的值为-3.19、(1);(2);(3)存在,.【解析】(1)根据为上的奇函数,得到,再由时,,设时,则代入求解.(2)设,易知在上单调递减,则,则,是方程的两个不等正根求解(3)设为的一个“罗尔区间”,且,同号,若,由(2)可得,若,同理可求,得到,再根据集合恰含有2个元素,转化为与的图象有两个交点,即方程在内恰有一个实数根,方程,在内恰有一个实数根求解..【详解】(1)因为为上的奇函数,∴,又当时,,所以当时,,所以,所以.(2)设,∵在上单调递减,∴,即,是方程的两个不等正根,∵,∴,∴在内的“罗尔区间”为.(3)设为的一个“罗尔区间”,则,∴,同号.当时,同理可求在内的“罗尔区间”为,∴,依题意,抛物线与函数的图象有两个交点时,一个交点在第一象限,一个交点在第三象限,所以应当使方程在内恰有一个实数根,且使方程,在内恰有一个实数根,由方程,即在内恰有一根,令,则,解得;由方程,即在内恰有一根,令,则,解得.综上可知,实数的取值集合为.【点睛】关键点点睛:本题关键是对“罗尔区间”的理解,特别是根据在上单调递减,得到,转化为,是方程的两个不等正根求解20、(1);(2)时,取得最大值为3;当时,取得最小值为【解析】利用倍角公式降幂,再由辅助角公式可把函数化简为(1)求出函数的半周期得答案;(2)由的范围求出的范围,利用正弦函数的性质可求原函数的最值及使原函数取得最值时的值详解】.(1)函数图象的相邻两条对称轴的距离为;(2),∴当,即时,取得最大值为3;当,即时,取得最小值为【点睛】本题考查型函数的图象与性质、倍角公式与两角和的正弦的应用,是基础题21、(1)为上的奇函数;证明见解析(2)答案不唯一,具体见解析【解析】(1)利用函数奇偶性的定义判断即可,(2)由题意可得,得,然后分和解不等式即可【小问1详解】函数为奇函数证明:函数的定义域为,,即对任意恒成立.所以为上的奇函数【小问2详解】由,得,即因为,,且,所以且由,即当,即时,解得当,即时,解得综上,当时,不等式的解集为;当时,不等式的解集为22、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版合同:房屋建筑招标投标合同(建筑工程监理服务协议书附录)
- 2025年综合类-安防类职业资格证-安防类职业资格证-安全防范系统安装维护员历年真题摘选带答案(5卷100道集锦-单选题)
- 2025年综合类-妇产科护理(医学高级)-护理学综合复习题历年真题摘选带答案(5卷100道集锦-单选题)
- 2025年综合类-基金销售从业资格考试-证券投资基金的类型历年真题摘选带答案(5卷100道集锦-单选题)
- 荆州八下期末数学试卷
- 桥梁设计中的结构安全性评估
- 农村生活污水治理项目投标书
- 2025汽车买卖销售合同范本
- 省师资库管理办法
- 社区自主管理办法
- 有关燃气中氧含量安全标准的探讨
- 派克气动综合样本celia version lucifer epp4比例调压阀
- 供热管网施工方案
- 磷酸钠安全周知卡、职业危害告知卡、理化特性表
- YC/T 299-2016烟草加工过程害虫防治技术规范
- 初中美术教学案例分析公开课一等奖省优质课大赛获奖课件
- DB14T 2313-2021 高速公路机电系统维护维修预算编制办法及定额
- 2023最新湖南省卫生系列高级职称参评论文正式期刊目录
- 爆破设计与施工试题库(2022年修订版)
- 铝板幕墙的技术交底记录
- 凯路威RFID生猪屠宰销售管理系统
评论
0/150
提交评论