辽宁省铁岭市2022-2023学年数学高一上期末统考试题含解析_第1页
辽宁省铁岭市2022-2023学年数学高一上期末统考试题含解析_第2页
辽宁省铁岭市2022-2023学年数学高一上期末统考试题含解析_第3页
辽宁省铁岭市2022-2023学年数学高一上期末统考试题含解析_第4页
辽宁省铁岭市2022-2023学年数学高一上期末统考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.下图记录了某景区某年月至月客流量情况:根据该折线图,下列说法正确的是()A.景区客流量逐月增加B.客流量的中位数为月份对应的游客人数C.月至月的客流量情况相对于月至月波动性更小,变化比较平稳D.月至月的客流量增长量与月至月的客流量回落量基本一致2.若,,,,则,,的大小关系是A. B.C. D.3.已知函数f(x)=-log2x,则f(x)的零点所在的区间是()A.(0,1) B.(2,3)C.(3,4) D.(4,+∞)4.将函数的图像向左、向下各平移1个单位长度,得到的函数图像,则()A. B.C. D.5.如果“,”是“”成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.不充分也不必要条件6.在梯形中,,,.将梯形绕所在直线旋转一周而形成的曲面所围成的几何体的体积为A. B.C. D.7.若函数f(x)=|x|+x3,则f(lg2)++f(lg5)+=()A.2 B.4C.6 D.88.已知是幂函数,且在第一象限内是单调递减,则的值为()A.-3 B.2C.-3或2 D.39.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也可用函数的解析式来琢磨函数的图象的特征,如通过函数的解析式可判断其在区间的图象大致为()A. B.C. D.10.下列函数中为奇函数,且在定义域上是增函数是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知,,则的值为12.在内不等式的解集为__________13.函数的最大值是__________14.已知角α∈(-,0),cosα=,则tanα=________.15.高三年级的一次模拟考试中,经统计某校重点班30名学生的数学成绩均在[100,150](单位:分)内,根据统计的数据制作出频率分布直方图如右图所示,则图中的实数a=__________,若以各组数据的中间数值代表这组数据的平均水平,估算该班的数学成绩平均值为__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数为偶函数(1)求实数的值;(2)记集合,,判断与的关系;(3)当时,若函数值域为,求的值.17.(Ⅰ)设x,y,z都大于1,w是一个正数,且有logxw=24,logyw=40,logxyzw=12,求logzw(Ⅱ)已知直线l夹在两条直线l1:x-3y+10=0和l2:2x+y-8=0之间的线段中点为P(0,1),求直线l的方程18.如图所示,某市政府决定在以政府大楼O为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM=R,∠MOP=45°,OB与OM之间的夹角为θ.(1)将图书馆底面矩形ABCD的面积S表示成θ的函数.(2)若R=45m,求当θ为何值时,矩形ABCD的面积S最大?最大面积是多少?(取=1.414)19.解下列不等式:(1);(2).20.已知函数的定义域是

A

,不等式的解集是集合

B

,求集合

A

.21.已知函数且若,求的值;若,求证:是偶函数

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】根据折线图,由中位数求法、极差的意义,结合各选项的描述判断正误即可.【详解】A:景区客流量有增有减,故错误;B:由图知:按各月份客流量排序为且是10个月份的客流量,因此数据的中位数为月份和月份对应客流量的平均数,故错误;C:由月至月的客流量相对于月至月的客流量:极差较小且各月份数据相对比较集中,故波动性更小,正确;D:由折线图知:月至月的客流量增长量与月至月的客流量回落量相比明显不同,故错误.故选:C2、D【解析】分析:利用指数函数与对数函数及幂函数的行贿可得到,再构造函数,通过分析和的图象与性质,即可得到结论.详解:由题意在上单调递减,所以,在上单调递则,所以,在上单调递则,所以,令,则其为单调递增函数,显然在上一一对应,则,所以,在坐标系中结合和的图象与性质,量曲线分别相交于在和处,可见,在时,小于;在时,大于;在时,小于,所以,所以,即,综上可知,故选D.点睛:本题主要考查了指数式、对数式和幂式的比较大小问题,本题的难点在于的大小比较,通过构造指数函数与一次函数的图象与性质分析解决问题是解答的关键,着重考查了分析问题和解答问题的能力,试题有一定难度,属于中档试题.3、C【解析】先判断出函数的单调性,然后得出的函数符号,从而得出答案.【详解】由在上单调递减,在上单调递减所以函数在上单调递减又根据函数f(x)在上单调递减,由零点存在定理可得函数在(3,4)之间存在零点.故选:C4、B【解析】根据函数的图象变换的原则,结合对数的运算性质,准确运算,即可求解.【详解】由题意,将函数的图像向左、向下各平移1个单位长度,可得.故选:B.5、A【解析】利用充分条件和必要条件的定义判断.【详解】当,时,,故充分;当时,,,故不必要,故选:A6、C【解析】由题意可知旋转后的几何体如图:

直角梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为故选C.考点:1、空间几何体的结构特征;2、空间几何体的体积.7、A【解析】利用f(x)解析式的特征和对数的计算法则运算即可﹒【详解】由于f(x)=|x|+x3,得f(-x)+f(x)=2|x|,又lg=-lg2,lg=-lg5∴原式=2|lg2|+2|lg5|=2(lg2+lg5)=2故选:A﹒8、A【解析】根据幂函数的定义判断即可【详解】由是幂函数,知,解得或.∵该函数在第一象限内是单调递减的,∴.故.故选:A.【点睛】本题考查了幂函数的定义以及函数的单调性问题,属于基础题9、A【解析】根据函数的定义域,函数的奇偶性,函数值的符号及函数的零点即可判断出选项.【详解】当时,令,得或,且时,;时,,故排除选项B.因为为偶函数,为奇函数,所以为奇函数,故排除选项C;因为时,函数无意义,故排除选项D;故选:A10、D【解析】结合基本初等函数的单调性及奇偶性分别检验各选项即可判断【详解】对于函数,定义域为,且,所以函数为偶函数,不符合题意;对于在定义域上不单调,不符合题意;对于在定义域上不单调,不符合题意;对于,由幂函数的性质可知,函数在定义域上为单调递增的奇函数,符合题意故选:D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、3【解析】,故答案为3.12、【解析】利用余弦函数的性质即可得到结果.【详解】∵,∴,根据余弦曲线可得,∴.故答案为:13、【解析】由题意得,令,则,且故,,所以当时,函数取得最大值,且,即函数的最大值为答案:点睛:(1)对于sinα+cosα,sinαcosα,sinα-cosα这三个式子,当其中一个式子的值知道时,其余二式的值可求,转化的公式为(sinα±cosα)2=1±2sinαcosα(2)求形如y=asinxcosx+b(sinx±cosx)+c的函数的最值(或值域)时,可先设t=sinx±cosx,转化为关于t的二次函数求最值(或值域)14、【解析】利用同角三角函数的平方关系和商数关系,即得解【详解】∵α∈(-,0),cosα=,∴sinα=-=-,∴tanα==-.故答案为:15、①.0.005(或)②.126.5(或126.5分)【解析】根据频率分布直方图的性质得到参数值,进而求得平均值.详解】由频率分布直方图可得:,∴;该班的数学成绩平均值为.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2);(3).【解析】(1)由恒成立,可得恒成立,进而得实数的值;(2)化简集合,得;(3)先判定的单调性,再求出时的范围,与等价即可求出实数的值.试题解析:(1)为偶函数,.(2)由(1)可知:,当时,;当时,.,.(3).上单调递增,,为的两个根,又由题意可知:,且.考点:1、函数的奇偶性及值域;2、对数的运算.17、(Ⅰ)60;(Ⅱ)x+4y-4=0【解析】(Ⅰ)logxw=24,logyw=40,logxyzw=12,将对数式改写指数式,得到.进而得出.问题得解(Ⅱ)设直线与的交点分别为,.可得,由的中点为,可得,.将,代入即可求解【详解】(Ⅰ)∵logxw=24,logyw=40,logxyzw=12,将对数式改写为指数式,得到x24=w,y40=w,(xyz)12=w从而,z12===,那么w=z60,∴logzw=60(Ⅱ)设直线l与l1,l2的交点分别为A(x1,y1),B(x2,y2)则

(*)∵A,B的中点为P(0,1),∴x1+x2=0,y1+y2=2.将x2=-x1,y2=2-y1代入(*)得,解之得,,所以,kAB==-,所以直线l的方程为y=-x+1,即x+4y-4=0【点睛】本题考查了指数与对数的互化、直线交点、中点坐标公式,考查了推理能力与计算能力,属于基础题18、(1)S=R2sin-R2,θ∈;(2)当θ=时,矩形ABCD面积S最大,最大面积为838.35m2.【解析】(1)设OM与BC的交点为F,用表示出,,,从而可得面积的表达式;(2)结合正弦函数的性质求得最大值【详解】解:(1)由题意,可知点M为PQ的中点,所以OM⊥AD.设OM与BC的交点为F,则BC=2Rsinθ,OF=Rcosθ,所以AB=OF-AD=Rcosθ-Rsinθ.所以S=AB·BC=2Rsinθ(Rcosθ-Rsinθ)=R2(2sinθcosθ-2sin2θ)=R2(sin2θ-1+cos2θ)=R2sin-R2,θ∈.(2)因为θ∈,所以2θ+∈,所以当2θ+,即θ=时,S有最大值.Smax=(-1)R2=(-1)×452=0.414×2025=838.35(m2).故当θ=时,矩形ABCD的面积S最大,最大面积为838.35m2.【点睛】关键点点睛:本题考查三角函数的应用,解题关键是利用表示出矩形的边长,从而得矩形面积.利用三角函数恒等变换公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求得最大值19、(1)或(2)【解析】【小问1详解】(1)因为,所以方程有两个不等实根x1=-1,x2=-3.所以原不等式的解集为或.【小问2详解】(2)因为,所以方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论