版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.方程的解所在区间是()A. B.C. D.2.已知集合,则()A. B.C. D.3.已知函数为奇函数,且当x>0时,=x2+,则等于()A.-2 B.0C.1 D.24.已知圆与直线交于,两点,过,分别作轴的垂线,且与轴分别交于,两点,若,则A.或1 B.7或C.或 D.7或15.在半径为2的圆上,一扇形的弧所对的圆心角为,则该扇形的面积为()A. B.C. D.6.下列函数中,最小正周期为且图象关于原点对称的函数是()A. B.C. D.7.设,,,则a,b,c的大小关系是()A. B.C. D.8.“x>1”是“x>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间(单位:天)与病情爆发系数之间,满足函数模型:,当时,标志着疫情将要大面积爆发,则此时约为()(参考数据:)A. B.C. D.10.若,为第四象限角,则的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若sinθ=,求的值_______12.定义域为的奇函数,当时,,则关于的方程所有根之和为,则实数的值为________13.函数在上的最小值为__________.14.已知幂函数的图象过点(2,),则___________15.已知函数有两个零点分别为a,b,则的取值范围是_____________16.已知幂函数在上是增函数,则实数m的值是_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(且)(1)若函数存在零点,求实数的最小值;(2)若函数有两个零点分别是,且对于任意的时恒成立,求实数的取值集合.18.已知关于一元二次不等式的解集为.(1)求函数的最小值;(2)求关于的一元二次不等式的解集.19.对于函数,若实数满足,则称是的不动点.现设(1)当时,分别求与的所有不动点;(2)若与均恰有两个不动点,求a的取值范围;(3)若有两个不动点,有四个不动点,证明:不存在函数满足20.对于函数,若在定义域内存在实数,满足,则称函数为“局部中心函数”.(1)已知二次函数,试判断是否为“局部中心函数”.并说明理由;(2)若是定义域为R上的“局部中心函数”,求实数m的取值范围.21.已知函数是偶函数(其中为自然对数的底数,…)(1)求的值;(2)若方程在区间上有实数根,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】判断所给选项中的区间的两个端点的函数值的积的正负性即可选出正确答案.【详解】∵,∴,,,,∴,∵函数的图象是连续的,∴函数的零点所在的区间是.故选C【点睛】本题考查了根据零存在原理判断方程的解所在的区间,考查了数学运算能力.2、A【解析】对集合B中的分类讨论分析,再根据集合间的关系判断即可【详解】当时,,当时,,当时,,所以,或,或因为,所以.故选:A3、A【解析】首先根据解析式求值,结合奇函数有即可求得【详解】∵x>0时,=x2+∴=1+1=2又为奇函数∴故选:A【点睛】本题考查了函数的奇偶性,结合解析式及函数的奇偶性,求目标函数值4、A【解析】由题可得出,利用圆心到直线的距离可得,进而求得答案【详解】因为直线的倾斜角为,,所以,利用圆心到直线的距离可得,解得或.【点睛】本题考查直线与圆的位置关系,属于一般题5、D【解析】利用扇形的面积公式即可求面积.【详解】由题设,,则扇形的面积为.故选:D6、A【解析】求出函数的周期,函数的奇偶性,判断求解即可【详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;故选A考点:三角函数的性质.7、C【解析】利用指数函数和对数函数的性质确定a,b,c的范围,由此比较它们的大小.【详解】∵函数在上为减函数,,∴,即,∵函数在上为减函数,,∴,即,函数在上为减函数,,即∴.故选:C.8、A【解析】根据充分、必要条件间的推出关系,判断“x>1”与“x>0”的关系.【详解】“x>1”,则“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要条件.故选:A.9、B【解析】根据列式求解即可得答案.【详解】解:因为,,所以,即,所以,由于,故,所以,所以,解得.故选:B.【点睛】本题解题的关键在于根据题意得,再结合已知得,进而根据解方程即可得答案,是基础题.10、D【解析】直接利用平方关系即可得解.【详解】解:因为,为第四象限角,所以.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】先通过诱导公式对原式进行化简,然后通分,进而通过同角三角函数的平方关系将原式转化为只含的式子,最后得到答案.【详解】原式=+,因为,所以.所以.故答案为:6.12、【解析】由题意,作函数y=f(x)与y=a的图象如下,结合图象,设函数F(x)=f(x)﹣a(0<a<1)的零点分别为x1,x2,x3,x4,x5,则x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵关于x的方程f(x)﹣a=0(0<a<1)所有根之和为1﹣,∴a=故答案为.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用13、【解析】正切函数在给定定义域内单调递增,则函数的最小值为.14、【解析】由幂函数所过的点求的解析式,进而求即可.【详解】由题设,若,则,可得,∴,故.故答案为:15、【解析】根据函数零点可转化为有2个不等的根,利用对数函数的性质可知,由均值不等式求解即可.详解】不妨设,因为函数有两个零点分别为a,b,所以,所以,即,且,,当且仅当,即时等号成立,此时不满足题意,,即,故答案为:16、1【解析】因为幂函数在上是增函数,所以,解得,又因为,所以.故填1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由题意列出不等式组,令,求出对称轴,若在区间上有解,则解不等式即可求得k的范围;(2)由韦达定理计算得,利用指数函数单调性解不等式,化简得,令,求出函数在区间上的值域从而求得m的取值范围.【详解】(1)由题意知有解,则有解,①③成立时,②显然成立,因此令,对称轴为:当时,在区间上单调递减,在区间上单调递增,因此若在区间上有解,则,解得,又,则,k得最小值为;(2)由题意知是方程的两根,则,,联立解得,解得,所以在定义域内单调递减,由可得对任意的恒成立,化简得,令,,对成立,所以在区间上单调递减,,所以【点睛】本题考查函数与方程,二次函数的图像与性质,考查韦达定理,求解指数型不等式,导数证明不等式,属于较难题.18、(1)(2)【解析】(1)由题意可得,解不等式求出的取值范围,再利用基本不等式求的最小值;(2)不等式化为,比较和的大小,即可得出不等式的解集.【小问1详解】因为关于一元二次不等式的解集为,所以,化简可得:,解得:,所以,所以,当且仅当即,的最小值为.【小问2详解】不等式,可化为,因为,所以,所以该不等式的解集为.19、(1)(2)(3)见详解.【解析】【小问1详解】因为,所以即,所以,所以的不动点为;解,,所以,因为是的解,所以上述四次方程必有因式,利用长除法或者双十字相乘法因式分解得,所以,所以的不动点为;【小问2详解】由得,由、得,因为是的解,所以上述四次方程必有因式,利用长除法或者双十字相乘法因式分解得,因为与均恰有两个不动点,所以①或②且和有同根,由①得,②中两方程相减得,所以,故,综上,a的取值范围是;【小问3详解】(3)设的不动点为,的不动点为,所以,设,则,所以,所以是的不动点,同理,也是的不动点,只能,假设存在,则或,因为过点,所以,否则矛盾,且,否则,所以一定存在,与均不同,所以,所以,所以有另外不动点,矛盾,故不存在函数满足20、(1)函数为“局部中心函数”,理由见解析;(2).【解析】(1)判断是否为“局部中心函数”,即判断方程是否有解,若有解,则说明是“局部中心函数”,否则说明不是“局部中心函数”;(2)条件是定义域为上的“局部中心函数”可转化为方程有解,再利用整体思路得出结果.【详解】解:(1)由题意,(),所以,,当时,解得:,由于,所以,所以为“局部中心函数”.(2)因为是定义域为上的“局部中心函数”,所以方程有解,即在上有解,整理得:,令,,故题意转化为在上有解,设函数,当时,在上有解,即,解得:;当时,则需要满足才能使在上有解,解得:,综上:,即实数m的取值范围.21、(1);(2)【解析】(1)由偶函数的定义可得恒成立,即可求出值;(2)由题意可分离参数得出有解,求出的值域即可.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版通讯器材购销合同3篇
- 2025年度大型活动场地租赁及服务合同4篇
- 2025年PVC管道产品检测与质量保证服务合同范本3篇
- 2025年消防给水系统设备及工程安全防护合同3篇
- 2025年度餐饮股份合作人力资源合作协议3篇
- 2024版跨国投资风险共保协议版B版
- 二零二五版国有控股企业股权置换与混合所有制改革合同3篇
- 2025年度消防安全通道维护外包服务合同3篇
- 2024移动支付技术服务合同
- 2024版暂定协议总价协议样本版B版
- 《消防设备操作使用》培训
- 新交际英语(2024)一年级上册Unit 1~6全册教案
- 2024年度跨境电商平台运营与孵化合同
- 2024年电动汽车充电消费者研究报告-2024-11-新能源
- 湖北省黄冈高级中学2025届物理高一第一学期期末考试试题含解析
- 上海市徐汇中学2025届物理高一第一学期期末学业水平测试试题含解析
- 稻壳供货合同范本
- 《采气树基础知识》课件
- 超龄员工用工免责协议书
- 机械工程师招聘笔试题及解答(某大型国企)
- 软件运维考核指标
评论
0/150
提交评论