江苏省盐城市盐都区时杨中学2022年数学高一上期末监测模拟试题含解析_第1页
江苏省盐城市盐都区时杨中学2022年数学高一上期末监测模拟试题含解析_第2页
江苏省盐城市盐都区时杨中学2022年数学高一上期末监测模拟试题含解析_第3页
江苏省盐城市盐都区时杨中学2022年数学高一上期末监测模拟试题含解析_第4页
江苏省盐城市盐都区时杨中学2022年数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若,则的最小值是()A.1 B.2C.3 D.42.定义域为的函数满足,当时,,若时,对任意的都有成立,则实数的取值范围是()A. B.C. D.3.将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位,所得函数图象的一条对称轴是()A. B.C. D.4.已知,其中a,b为常数,若,则()A. B.C.10 D.25.纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大的贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是(℃),空气的温度是(℃),经过t分钟后物体的温度T(℃)可由公式得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出,则空气温度是()A.5℃ B.10℃C.15℃ D.20℃6.已知,则x等于A. B.C. D.7.定义在上的函数满足,且当时,,若关于的方程在上至少有两个实数解,则实数的取值范围为()A. B.C. D.8.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确有A.1个 B.2个C.3个 D.4个9.若函数且,则该函数过的定点为()A. B.C. D.10.三个数的大小关系为()A. B.C. D.11.设则的大小关系是A. B.C. D.12.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数是定义在的偶函数,且当时,若函数有8个零点,分别记为,,,,,,,,则的取值范围是______.14.以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体的表面积为__________15.已知函数的图象恒过点P,若点P在角的终边上,则_________16.已知向量,写出一个与共线的非零向量的坐标__________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已函数.(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间.18.已知(1)若函数和函数的图象关于原点对称,求函数的解析式(2)若在上是增函数,求实数的取值范围19.已知函数,,(1)求的解析式和最小正周期;(2)求在区间上的最大值和最小值20.已知集合,(1)当时,求;(2)若,求a的取值范围21.设在区间单调,且都有(1)求的解析式;(2)用“五点法”作出在的简图,并写出函数在的所有零点之和.22.已知函数为奇函数,且(1)求a和的值;(2)若,求的值

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】采用拼凑法,结合基本不等式即可求解.【详解】因为,,当且仅当时取到等号,故的最小值是3.故选:C2、B【解析】由可求解出和时,的解析式,从而得到在上的最小值,从而将不等式转化为对恒成立,利用分离变量法可将问题转化为,利用二次函数单调性求得在上的最大值,从而得到,进而求得结果.【详解】当时,时,当时,,时,时,,即对恒成立即:对恒成立令,,,解得:故选:B3、D【解析】根据三角形函数图像变换和解析式的关系即可求出变换后函数解析式,从而根据余弦函数图像的性质可求其对称轴.【详解】将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),则函数解析式变为;向左平移个单位得,由余弦函数的性质可知,其对称轴一定经过图象的最高点或最低点,故对称轴为:,k∈Z,k=1时,.故选:D.4、A【解析】计算出,结合可求得的值.【详解】因为,所以,若,则.故选:A5、B【解析】依题意可得,即,即可得到方程,解得即可;【详解】:依题意,即,又,所以,即,解得;故选:B6、A【解析】把已知等式变形,可得,进一步得到,则x值可求【详解】由题意,可知,可得,即,所以,解得故选A【点睛】本题主要考查了有理指数幂与根式的运算,其中解答中熟记有理指数幂和根式的运算性质,合理运算是解答的关键,着重考查了运算与求解能力,属于基础题.7、C【解析】把问题转化为函数在上的图象与直线至少有两个公共点,再数形结合,求解作答.【详解】函数满足,当时,,则当时,,当时,,关于的方程在上至少有两个实数解,等价于函数在上的图象与直线至少有两个公共点,函数的图象是恒过定点的动直线,函数在上的图象与直线,如图,观察图象得:当直线过点时,,将此时的直线绕点A逆时针旋转到直线的位置,直线(除时外)与函数在上的图象最多一个公共点,此时或或a不存在,将时的直线(含)绕A顺时针旋转到直线(不含直线)的位置,旋转过程中的直线与函数在上的图象至少有两个公共点,此时,所以实数的取值范围为.故选:C【点睛】方法点睛:图象法判断函数零点个数,作出函数f(x)的图象,观察与x轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.8、A【解析】利用三个公理及其推论逐项判断后可得正确的选项.【详解】对于①,三个不共线的点可以确定一个平面,所以①不正确;对于②,一条直线和直线外一点可以确定一个平面,所以②不正确;对于③,若三点共线了,四点一定共面,所以③正确;对于④,当三条平行线共面时,只能确定一个平面,所以④不正确.故选:A.9、D【解析】根据指数函数的图像经过定点坐标是,利用平移可得到答案.【详解】因为指数函数的图像经过定点坐标是,函数图像向右平移个单位,再向上平移个单位,得到,函数的图像过的定点.故选:.【点睛】本题主要考查的是指数函数的图像和性质,考查学生对指数函数的理解,是基础题.10、A【解析】利用指数对数函数的性质可以判定,从而做出判定.【详解】因为指数函数是单调增函数,是单调减函数,对数函数是单调减函数,所以,所以,故选:A11、C【解析】由在区间是单调减函数可知,,又,故选.考点:1.指数函数的性质;2.函数值比较大小.12、A【解析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由偶函数的对称性,将转化为,再根据二次函数的对称性及对数函数的性质可进一步转化为,结合利用二次函数的性质即可求解.【详解】解:因为函数有8个零点,所以直线与函数图像交点有8个,如图所示:设,因为函数是定义在的偶函数,所以函数的图像关于轴对称,所以,且由二次函数对称性有,由有,所以又,所以,所以,故答案为:.14、【解析】以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体为圆锥,圆锥的底面半径,母线长,该几何体的表面积为:.故答案为15、【解析】由对数函数的性质可得点的坐标,由三角函数的定义求得与的值,再由正弦的二倍角公式即可求解.【详解】易知恒过点,即,因为点在角的终边上,所以,所以,,所以,故答案为:.16、(纵坐标为横坐标2倍即可,答案不唯一)【解析】向量与共线的非零向量的坐标纵坐标为横坐标2倍,例如(2,4)故答案为三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2),k∈Z.【解析】(1)首先利用三角恒等变换化简函数,根据周期公式求函数周期;(2)代入单调递增区间,求解函数的单调递增区间.【详解】解:(1).所以,f(x)的周期为.(2)由(k∈Z),得(k∈Z).所以,f(x)的单调递增区间是,k∈Z.18、(1)(2)【解析】(1)化简f(x)解析式,设函数的图象上任一点,,它关于原点的对称点为,其中,,利用点在函数的图象上,将其坐标代入的表达式即可得g(x)解析式;(2)可令,将在转化为:,对的系数分类讨论,利用一次函数与二次函数的性质讨论解决即可【小问1详解】设函数的图象上任一点,关于原点的对称点为,则,,由点在函数的图象上,,即,函数的解析式为;【小问2详解】由,设,由,且t在上单调递增,根据复合函数单调性规则,要使h(x)在上为增函数,则在上为增函数,①当时,在,上是增函数满足条件,;②当时,m(t)对称轴方程为直线,(i)当-(1+λ)>0时,,应有t=,解得,(ii当-(1+λ)<0时,,应有,解得;综上所述,19、(1),;(2)最大值2,最小值【解析】(1)先将代入,结合求出函数解析式,再用公式求出最小正周期.(2)根据,求出的范围,再求出的范围,即可得出在区间上的最大值和最小值.【详解】解:(1)因为,,所以,所以,又因为,所以,故的解析式为,所以的最小正周期为.(2)因为,所以,所以,则,故在区间上的最大值2,最小值.【点睛】本题主要考查了三角函数的恒等变换的应用,三角函数的性质,注重对基础知识的考查.20、(1)(2)【解析】(1)解一元二次不等式求得集合,由补集和并集的定义可运算求得结果;(2)分别在和两种情况下,根据交集为空集可构造不等式求得结果.【小问1详解】由题意得,或,,.【小问2详解】,当时,,符合题意,当时,由,得,故a的取值范围为21、(1)(2)图象见解析,所有零点之和为【解析】(1)依题意在时取最大值,在时取最小值,再根据函数在单调,即可得到,即可求出,再根据函数在取得最大值求出,即可求出函数解析式;(2)列出表格画出函数图象,再根据函数的对称性求出零点和;【小问1详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论