




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数y=sin2x的图象可能是A. B.C. D.2.某甲、乙两人练习跳绳,每人练习10组,每组40个.每组计数的茎叶图如下图,则下面结论中错误的一个是()A.甲比乙的极差大B.乙的中位数是18C.甲的平均数比乙的大D.乙的众数是213.定义在上的函数满足,当时,,当时,.则=()A.338 B.337C.1678 D.20134.高斯是德国著名的数学家,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为()A. B.C. D.5.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数(且)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,动点满足,则动点轨迹与圆位置关系是()A.外离 B.外切C.相交 D.内切6.当生物死后,它体内的碳14含量会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半.2010年考古学家对良渚古城水利系统中一条水坝的建筑材料草裹泥)上提取的草茎遗存进行碳14检测,检测出碳14的残留量约为初始量的,以此推断此水坝建成的年代大概是公元前()(参考数据:,)A.年 B.年C.年 D.年7.定义域为的函数满足,当时,,若时,对任意的都有成立,则实数的取值范围是()A. B.C. D.8.已知函数则函数值域是()A. B.C. D.9.已知扇形的圆心角为,半径为10,则扇形的弧长为()A. B.1C.2 D.410.若,,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.如果对任意实数x总成立,那么a的取值范围是____________.12.在正三棱柱中,为棱的中点,若是面积为6的直角三角形,则此三棱柱的体积为__________13.设,,依次是方程,,的根,并且,则,,的大小关系是___14.命题的否定是__________15.写出一个同时具有下列性质①②③的函数_________①在R上单调递增;②;③三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数,(1)当时,求函数的值域;(2)若恒成立,求实数的取值范围17.已知函数.(1)求的定义域和的值;(2)当时,求,的值.18.已知函数,其中.(1)若对任意实数,恒有,求的取值范围;(2)是否存在实数,使得且?若存在,则求的取值范围;若不存在,则加以证明.19.如图所示,正方体的棱长为,过顶点、、截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥的高.20.如图,在四棱锥中,侧面底面,侧棱,底面为直角梯形,其中为中点.(1)求证:平面;(2)求异面直线与所成角的余弦值;(3)线段上是否存在,使得它到平面的距离为?若存在,求出的值.21.已知函数.(1)根据定义证明:函数在上是增函数;(2)根据定义证明:函数是奇函数.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复2、B【解析】通过茎叶图分别找出甲、乙的最大值以及最小值求出极差即可判断A;找出乙中间的两位数即可判断B;分别求出甲、乙的平均数判断C;观察乙中数据即可判断D;【详解】对于A,由茎叶图可知,甲的极差为,乙的极差为,故A正确;对于B,乙中间两位数为,故中位数为,故B错误;对于C,甲的平均数为,乙的平均数为,故C正确;对于D,乙组数据中出现次数最多为21,故D正确;故选:B【点睛】本题考查了由茎叶图估计样本数据的数字特征,属于基础题.3、B【解析】,,即函数是周期为的周期函数.当时,,当时,.,,故本题正确答案为4、B【解析】先利用换元思想求出函数的值域,再分类讨论,根据新定义求得函数的值域【详解】(),令,可得,在上递减,在上递增,时,有最小值,又因为,所以当时,,即函数的值域为,时,;时,;时,;的值域是故选:B【点睛】思路点睛:新定义是通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.5、C【解析】设动点P的坐标,利用已知条件列出方程,化简可得点P的轨迹方程为圆,再判断圆心距和半径的关系即可得解.,详解】设,由,得,整理得,表示圆心为,半径为的圆,圆的圆心为为圆心,为半径的圆两圆的圆心距为,满足,所以两个圆相交.故选:C.6、B【解析】根据碳14的半衰期为5730年,即每5730年含量减少一半,设原来的量为,经过年后变成了,即可列出等式求出的值,即可求解.【详解】解:根据题意可设原来的量为,经过年后变成了,即,两边同时取对数,得:,即,,,以此推断此水坝建成的年代大概是公元前年.故选:B.7、B【解析】由可求解出和时,的解析式,从而得到在上的最小值,从而将不等式转化为对恒成立,利用分离变量法可将问题转化为,利用二次函数单调性求得在上的最大值,从而得到,进而求得结果.【详解】当时,时,当时,,时,时,,即对恒成立即:对恒成立令,,,解得:故选:B8、B【解析】结合分段函数的单调性来求得的值域.【详解】当吋,单调递增,值域为;当时,单调递增,值域为,故函数值域为.故选:B9、D【解析】由扇形的弧长公式运算可得解.【详解】解:因为扇形的圆心角为,半径为10,所以由弧长公式得:扇形的弧长为故选:D10、B【解析】应用诱导公式可得,,进而判断角的终边所在象限.【详解】由题设,,,所以角的终边在第二象限.故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】先利用绝对值三角不等式求出的最小值,进而求出a的取值范围.【详解】,当且仅当时等号成立,故,所以a的取值范围是.故答案为:12、【解析】由题,设,截面是面积为6的直角三角形,则由得,又则故答案为13、【解析】本题首先可以根据分别是方程的根得出,再根据即可得出,然后通过函数与函数的性质即可得出,最后得出结果【详解】因为,,,所以,因为,,所以,,因为函数与函数都是单调递增函数,前者在后者的上方,所以,综上所述,【点睛】本题考查方程的根的比较大小,通常可通过函数性质或者根的大致取值范围进行比较,考查函数思想,考查推理能力,是中档题14、;【解析】根据存在量词的命题的否定为全称量词命题即可得解;【详解】解:因为命题“”为存在量词命题,其否定为全称量词命题为故答案为:15、(答案不唯一,形如均可)【解析】由指数函数的性质以及运算得出.【详解】对函数,因在R上单调递增,所以在R上单调递增;,.故答案为:(答案不唯一,形如均可)三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2).【解析】(1)采用换元,令,当时,把函数转化为二次函数,即可求出答案.(2)采用换元,令,即在恒成立,即可求出答案.【小问1详解】函数,令,当时,,的值域为.【小问2详解】,恒成立,只需:在恒成立;令:则得.17、(1)定义域为,;(2),.【解析】(1)由根式、分式的性质求函数定义域,将自变量代入求即可.(2)根据a的范围,结合(1)的定义域判断所求函数值是否有意义,再将自变量代入求值即可.【小问1详解】由,则定义域为,且.【小问2详解】由,结合(1)知:,有意义.所以,.18、(1);(2)存在,.【解析】(1)首先求出在上的最大值,问题转化为对任意成立,然后化简不等式,参变分离构造即可.(2)分a>0和a<0两种情况讨论,去掉绝对值符号,转化为解不等式的问题.【小问1详解】,,,∴,∴原问题对任意成立,即对任意成立,即对任意成立,∴.故a的范围是:.【小问2详解】①,,∵,∴,∴不等式变为,∴;(2),,∵,∴此时无解.综上所述,存在满足题意.19、(1);(2).【解析】(1)由题意,正方体的几何结构特征,结合棱锥和正方体的体积公式,即可求解;(2)由(1),结合,即可求解.【详解】(1)由题意,正方体的棱长为,则正方体的体积为,根据三棱锥的体积公式,可得,所以剩余部分的体积.(2)由(1)知,设三棱锥的高为,则,故,解得.【点睛】求空间几何体的表面积与体积的求法:(1)公式法:对于规则的几何体的表面积和体积,可直接利用公式进行求解;(2)割补法:把不规则的图形分割成规则的图形,然后进行体积的计算,或不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算;(3)等体积法:等体积法也称积转化或等积变形,通过选择合适的底面来求几何体体积的一种方法,多用来解决锥体的体积,特别时三棱锥的体积.20、(1)见解析;(2);(3)存在,..【解析】(1)根据线面垂直的判定定理可知,只需证直线PO垂直平面ABCD中的两条相交直线垂直即可;(2)先通过平移将两条异面直线平移到同一个起点B,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可;(3)利用Vp-DQC=VQ-PCD,即可得出结论试题解析:(1)证明:在中为中点,所以.又侧面底面,平面平面平面,所以平面.(2)解:连接,在直角梯形中,,有且,所以四边形是平行四边形,所以.由(1)知为锐角,所以是异面直线与所成的角,因为,在中,,所以,在中,因为,所以,在中,,所以,所以异面直线与所成的角的余弦值为.(3)解:假设存在点,使得它到平面的距离为.设,则,由(2)得,在中,,所以,由得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/YNIA 009-2022隔离衣用非织造布
- 2025年主持与播音考试模拟题及答案
- 人文创意产业考试题及答案2025年
- 2025年学习动机与策略发展基础知识考试试题及答案
- 2025年土木工程材料综合检测学习考试试题及答案
- 2025年市场调研师考试试卷及答案
- 2025年生态环境保护知识测试题及答案
- 2025年高校教师教学能力考核题及答案
- 2025年公共交通管理与服务考试试题及答案
- 2025年环境科学与生态学考研模拟试卷及答案
- 电影你的名字课件
- 消防行车安全教育课件
- (小学)语文教师书写《写字教学讲座》教育教研讲座教学培训课件
- 设备清洁安全保养培训课件
- 心理危机评估中的量表和工具
- plc课程设计模压机控制
- 中国大学生积极心理品质量表
- 2023充电桩停车场租赁合同 充电桩租地合同正规范本(通用版)
- JCT908-2013 人造石的标准
- 质量管理员聘用合同
- 湖南省 2023-2024 年普通高中学业水平合格性考试(一) 语文试卷(含答案)
评论
0/150
提交评论