2023届广东省阳春市高一上数学期末监测试题含解析_第1页
2023届广东省阳春市高一上数学期末监测试题含解析_第2页
2023届广东省阳春市高一上数学期末监测试题含解析_第3页
2023届广东省阳春市高一上数学期末监测试题含解析_第4页
2023届广东省阳春市高一上数学期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知角的终边上一点,且,则()A. B.C. D.2.已知集合,,则A. B.C. D.3.已知幂函数的图象过点(2,),则的值为()A B.C. D.4.已知是锐角,那么是()A.第一象限角 B.第二象限角C.小于180°的正角 D.第一或第二象限角5.已知向量,,,若,,则()A. B.C. D.6.已知函数fx=2x2+bx+c(b,c为实数),f-10=f12.若方程A.4 B.2C.1 D.17.设集合,集合,则等于()A(1,2) B.(1,2]C.[1,2) D.[1,2]8.已知函数,则的值是A. B.C. D.9.已知函数在区间上有且只有一个零点,则正实数的取值范围是()A. B.C. D.10.若向量,则下列结论正确的是A. B..C. D.11.是上的奇函数,满足,当时,,则()A. B.C. D.12.已知点,,,则的面积为()A.5 B.6C.7 D.8二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鱼的科学家发现大西洋鲑鱼的游速(单位:)可以表示为,其中表示鱼的耗氧量的单位数.当一条大西洋鲑鱼的耗氧量的单位数是其静止时耗氧量的单位数的倍时,它的游速是________14.若实数x,y满足,且,则的最小值为___________.15.求值:__________.16.若,,则等于_________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知为坐标原点,,,若(1)求函数的对称轴方程;(2)当时,若函数有零点,求的范围.18.已知(1)求函数的单调递增区间;(2)当时,函数的值域为,求实数的范围19.如图1,直角梯形ABCD中,,,.如图2,将图1中沿AC折起,使得点D在平面ABC上的正投影G在内部.点E为AB的中点.连接DB,DE,三棱锥D-ABC的体积为.对于图2的几何体(1)求证:;20.设,.(1)求的值;(2)求与夹角的余弦值.21.已知定理:“若、为常数,满足,则函数的图象关于点中心对称”.设函数,定义域为.(1)试求的图象对称中心,并用上述定理证明;(2)对于给定的,设计构造过程:、、、.如果,构造过程将继续下去;如果,构造过程将停止.若对任意,构造过程可以无限进行下去,求的取值范围.22.已知函数图象的一个最高点和最低点的坐标分别为和(1)求的解析式;(2)若存在,满足,求m的取值范围

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】由三角函数的定义可列方程解出,需注意的范围【详解】由三角函数定义,解得,由,知,则.故选:B.2、A【解析】由得,所以;由得,所以.所以.选A3、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题4、C【解析】由题知,故,进而得答案.【详解】因为是锐角,所以,所以,满足小于180°的正角.其中D选项不包括,故错误.故选:C5、C【解析】计算出向量的坐标,然后利用共线向量的坐标表示得出关于实数的等式,解出即可.【详解】向量,,,又且,,解得.故选:C.【点睛】本题考查平面向量的坐标运算,考查共线向量的坐标表示,考查计算能力,属于基础题.6、B【解析】由f-10=f12求得b=-4,再由方程fx=0有两个正实数根x1【详解】因为函数fx=2x2+bx+c(b所以200-10b+c=288+12b+c,解得b=-4,所以fx因为方程fx=0有两个正实数根x1所以Δ=16-8c≥0解得0<c≤2,所以1x当c=2时,等号成立,所以其最小值是2,故选:B7、B【解析】由指数函数、对数函数的性质可得、,再由交集的运算即可得解.【详解】因为,,所以.故选:B.【点睛】本题考查了指数不等式的求解及对数函数性质的应用,考查了集合交集的运算,属于基础题.8、B【解析】直接利用分段函数,求解函数值即可【详解】函数,则f(1)+=log210++1=故选B【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力9、D【解析】将零点个数问题转化为两个函数图象的交点个数问题,通过对参数讨论作图可解.【详解】在区间上有且只有一个零点在区间上有且只有一个解,即在区间上有且只有一个解令,,当,即时,因为在上单调递减,在上单调递增且,,由图1知,此时函数与在上只有一个交点;当,即时,因为,所以要使函数与在上有且只有一个交点,由图2知,即,解得或(舍去).综上,的取值范围为.故选:D10、C【解析】本题考查向量的坐标运算解答:选项A、选项B、选项C、,正确选项D、因为所以两向量不平行11、D【解析】根据函数的周期性与奇偶性可得,结合当时,,得到结果.【详解】∵∴的周期为4,∴,又是上奇函数,当时,,∴,故选:D【点睛】本题考查函数的周期性与奇偶性,解题的关键是根据函数的性质将未知解析式的区间上函数的求值问题转化为已知解析式的区间上来求,本题考查了转化化归的能力及代数计算的能力.12、A【解析】设AB边上的高为h,则S△ABC=|AB|·h,根据两点的距离公式求得|AB|,而AB边上的高h就是点C到直线AB的距离,由点到直线的距离公式可求得选项【详解】设AB边上的高为h,则S△ABC=|AB|·h,而|AB|=,AB边上的高h就是点C到直线AB的距离AB边所在的直线方程为,即x+y-4=0.点C到直线x+y-4=0的距离为,因此,S△ABC=×2×=5.故选:A二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】设大西洋鲑鱼静止时的耗氧量为,计算出的值,再将代入,即可得解.【详解】设大西洋鲑鱼静止时的耗氧量为,则,可得,将代入可得.故答案为:.14、8【解析】由给定条件可得,再变形配凑借助均值不等式计算作答.【详解】由得:,又实数x,y满足,则,当且仅当,即时取“=”,由解得:,所以当时,取最小值8.故答案为:8【点睛】思路点睛:在运用基本不等式时,要特别注意“拆”、“拼”、“凑”等技巧,使用其满足基本不等式的“一正”、“二定”、“三相等”的条件.15、【解析】利用诱导公式一化简,再求特殊角正弦值即可.【详解】.故答案为:.16、【解析】由同角三角函数基本关系求出的值,再由正弦的二倍角公式即可求解.【详解】因为,,所以,所以,故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),(2)【解析】(1)先利用数量积的坐标表示以及三角恒等变换化简三角函数得,再根据正弦函数的对称性即可得出结论;(2)由题意得有解,求出函数在区间上的值域即可得出结论【详解】解:(1),,,对称轴方程为,即;(2),有零点,,,,,,【点睛】本题主要考查三角函数的图象与性质,属于基础题18、(1),(2)【解析】(1)根据正弦函数的性质计算可得;(2)首先求出函数取最大值时的取值集合,即可得到,再根据函数在上是减函数,且,则的最大值为内使函数值为的值,即可求出的取值范围;【小问1详解】解:对于函数,令,,求得,故函数的单调递增区间为,【小问2详解】解:令,,解得,.即时取得最大值因为当时,取到最大值,所以又函数在上是减函数,且,故的最大值为内使函数值为的值,令,即,因为,所以,所以,解得,所以的取值范围是19、(1)证明见解析;(2).【解析】(1)取AC的中点F,连接DF,CE,EF,证明AC⊥平面DEF即可.(2)以G为坐标原点,建立空间直角坐标系,利用向量的方法求解线面角.【小问1详解】取AC的中点F,连接DF,CE,EF,则△DAC,△EAC均为等腰直角三角形∴AC⊥DF,AC⊥EF,∵DF∩EF=F,∴AC⊥平面DEF,又DE⊂平面DEF,∴DE⊥AC【小问2详解】连接GA,GC,∵DG⊥平面ABC,而GA⊂平面ABC,GC⊂平面ABC,∴DG⊥GA,DG⊥GC,又DA=DC,∴GA=GC,∴G在AC的垂直平分线上,又EA=EC,∴E在AC的垂直平分线上,∴EG垂直平分AC,又F为AC的中点,∴E,F,G共线∴S△ABC=×|AC|×|BC|=×6×6=18,∴VDABC=×S△ABC×|DG|=×18×|DG|=12,∴DG=2在Rt△DGF中,|GF|=以G为坐标原点,GM为x轴,GE为y轴,GD为z轴,建立如图所示的空间直角坐标系,则A(3,-1,0),E(0,2,0),C(-3,-1,0),D(0,0,2),∴=(0,2,-2),=(3,-1,-2),=(-3,-1,-2),设平面DAC的法向量为=(x,y,z),则,得,令z=1,得:,于是,.20、(1)-2;(2).【解析】(1),,所以;(2)因为,所以代值即可得与夹角的余弦值.试题解析:(1)(2)因为,,所以.21、(1),证明见解析;(2).【解析】(1)计算出的值,由此可得出结论;(2)分、、三种情况讨论,求出函数的值域,根据题意可得出关于实数的不等式组,由此可求得实数的取值范围.【详解】(1),由已知定理得,的图象关于点成中心对称;(2),当时,若,由基本不等式可得,若,由基本不等式可得.此时,函数的值域为,当时,的值域为,当时,的值域为,因为构造过程可以无限进行下去,对任意恒成立或,由此得到.因此,实数的取值范围是.【点睛】关键点点睛:本题考查函数的新定义问题,解本题的关键在于对实

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论