版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.“”是“幂函数在上单调递增”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.若存在正数x使成立,则a的取值范围是A. B.C. D.3.某几何体的三视图如图所示,则该几何体的体积是A. B.8C.20 D.244.《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其外形由圆柱和长方体组合而成.已知某组合体由圆柱和长方体组成,如图所示,圆柱的底面直径为1寸,长方体的长、宽、高分别为3.8寸,3寸,1寸,该组合体的体积约为12.6立方寸,若取3.14,则圆柱的母线长约为()A.0.38寸 B.1.15寸C.1.53寸 D.4.59寸5.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为(单位:),鲑鱼的耗氧量的单位数为.科学研究发现与成正比.当时,鲑鱼的耗氧量的单位数为.当时,其耗氧量的单位数为()A. B.C. D.6.下列函数中,周期为的是()A. B.C. D.7.已知矩形,,,将矩形沿对角线折成大小为的二面角,则折叠后形成的四面体的外接球的表面积是A. B.C. D.与的大小有关8.函数在上的部分图象如图所示,则的值为A. B.C. D.9.函数(,)在一个周期内的图象如图所示,为了得到正弦曲线,只需把图象上所有的点()A.向左平移个单位长度,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变B.向右平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变D.向右平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变10.函数的定义域是A. B.C. D.11.设y1=0.4,y2=0.5,y3=0.5,则()A.y3<y2<y1 B.y1<y2<y3C.y2<y3<y1 D.y1<y3<y212.如图,在正三棱柱中,,若二面角的大小为,则点C到平面的距离为()A.1 B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数,则=____________14.已知函数,则_________15.在平面内将点绕原点按逆时针方向旋转,得到点,则点的坐标为__________16.在中,已知是x的方程的两个实根,则________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.化简求值:(1)已知都为锐角,,求的值;(2).18.已知,函数.(1)求的定义域;(2)若在上的最小值为,求的值.19.已知角的顶点与坐标原点重合,始边与x轴非负半轴重合,终边过点(1)求值(2)已知,求的值20.已知函数(1)求函数的单调递减区间;(2)若关于的方程有解,求的取值范围21.已知函数是定义在上的奇函数,且当时,(1)求实数的值;(2)求函数在上的解析式;(3)若对任意实数恒成立,求实数的取值范围22.在①函数的图象向右平移个单位长度得到的图象,且图象关于原点对称;②向量,,,;③函数.在以上三个条件中任选一个,补充在下面问题中空格位置,并解答.已知______,函数的图象相邻两条对称轴之间的距离为.(1)若,且,求的值;(2)求函数在上的单调递减区间.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】由幂函数的概念,即可求出或,再根据或均满足在上单调递增以及充分条件、必要条件的概念,即可得到结果.【详解】若为幂函数,则,解得或,又或都满足在上单调递增故“”是“幂函数在上单调递增”的充分不必要条件故选:A.2、D【解析】根据题意,分析可得,设,利用函数的单调性与最值,即可求解,得到答案【详解】根据题意,,设,由基本初等函数的性质,得则函数在R上为增函数,且,则在上,恒成立;若存在正数x使成立,即有正实数解,必有;即a的取值范围为;故选D【点睛】本题主要考查了函数单调性的应用,以及不等式的有解问题,其中解答中合理把不等式的有解问题转化为函数的单调性与最值问题是解答的关键,着重考查分析问题和解答问题的能力,属于中档试题3、C【解析】由三视图可知,该几何体为长方体上方放了一个直三棱柱,其体积为:.故选C点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图4、C【解析】先求出长方体的体积,进而求出圆柱的体积,利用求出的圆柱体体积和圆柱的底面半径为0.5寸,求出圆柱的母线长【详解】由题意得,长方体的体积为(立方寸),故圆柱的体积为(立方寸).设圆柱的母线长为l,则由圆柱的底面半径为0.5寸,得,计算得:(寸).故选:C5、D【解析】设,利用当时,鲑鱼的耗氧量的单位数为求出后可计算时鲑鱼耗氧量的单位数.【详解】设,因为时,,故,所以,故时,即.故选:D.【点睛】本题考查对数函数模型在实际中的应用,解题时注意利用已知的公式来求解,本题为基础题.6、C【解析】对于A、B:直接求出周期;对于C:先用二倍角公式化简,再求其周期;对于D:不是周期函数,即可判断.【详解】对于A:的周期为,故A错误;对于B:的周期为,故B错误;对于C:,所以其周期为,故C正确;对于D:不是周期函数,没有最小正周期,故D错误.故选:C7、C【解析】由题意得,在二面角内的中点O到点A,B,C,D的距离相等,且为,所以点O即为外接球的球心,且球半径为,所以外接球的表面积为.选C8、C【解析】由图象最值和周期可求得和,代入可求得,从而得到函数解析式,代入可求得结果.【详解】由图象可得:,代入可得:本题正确选项:【点睛】本题考查三角函数值的求解,关键是能够根据正弦函数的图象求解出函数的解析式.9、B【解析】先利用图像求出函数的解析式,在对四个选项,利用图像变换一一验证即可.【详解】由图像可知:,所以,所以,解得:.所以.又图像经过,所以,解得:,所以对于A:把图象上所有的点向左平移个单位长度,得到,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变得到.故A错误;对于B:把图象上所有点向右平移个单位长度,得到,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变.故B正确;对于C:把图象上所有点向左平移个单位长度,得到,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变.故C错误;对于D:把图象上所有的点向右平移个单位长度,得到,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变得到.故D错误;故选:B10、B【解析】根据根式、对数及分母有意义的原则,即可求得x的取值范围【详解】要使函数有意义,则需,解得,据此可得:函数的定义域为.故选B.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.本题求解时要注意根号在分母上,所以需要,而不是.11、B【解析】本题考查幂函数与指数函数的单调性考查幂函数,此为定义在上的增函数,所以,则;考查指数函数,此为定义在在上的减函数,所以,所以所以有故正确答案为12、C【解析】取的中点,连接和,由二面角的定义得出,可得出、、的值,由此可计算出和的面积,然后利用三棱锥的体积三棱锥的体积相等,计算出点到平面的距离.【详解】取的中点,连接和,根据二面角的定义,.由题意得,所以,.设到平面的距离为,易知三棱锥的体积三棱锥的体积相等,即,解得,故点C到平面的距离为.故选C.【点睛】本题考查点到平面距离的计算,常用的方法有等体积法与空间向量法,等体积法本质就是转化为三棱锥的高来求解,考查计算能力与推理能力,属于中等题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由函数解析式,先求得,再求得代入即得解.【详解】函数,则==,故答案为.【点睛】本题考查函数值的求法,属于基础题.14、【解析】运用代入法进行求解即可.【详解】,故答案为:15、【解析】由条件可得与x轴正向的夹角为,故与x轴正向的夹角为设点B的坐标为,则,,∴点的坐标为答案:16、##【解析】根据根与系数关系可得,,再由三角形内角和的性质及和角正切公式求,即可得其大小.【详解】由题设,,,又,且,∴.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),(2)0.【解析】(1)先计算出,的值,然后根据角的配凑以及两角差的余弦公式求解出的值;(2)利用诱导公式以及两角和的正切公式结合正、余弦的齐次式计算化简原式【小问1详解】因为,都为锐角,,,所以,,则【小问2详解】原式18、(1);(2).【解析】(1)由题意,函数的解析式有意义,列出不等式组,即可求解函数的定义域;(2)由题意,化简得,设,根据复合函数性质,分类讨论得到函数的单调性,得出函数最值的表达式,即可求解【详解】(1)由题意,函数,满足,解得,即函数的定义域为(2)由,设,则表示开口向下,对称轴的方程为,所以在上为单调递增函数,在单调递减,根据复合函数的单调性,可得因为,函数在为单调递增函数,在单调递减,所以,解得;故实数的值为【点睛】本题主要考查了对数函数的图象与性质的应用,以及与对数函数复合函数的最值问题,其中解答中熟记对数函数的图象与性质,合理分类讨论求解是解答本题的关键,着重考查了推理与运算能力,属于中档试题19、(1)(2)【解析】(1)依题意,将原式利用诱导公式化简,分子分母同除,代入正切计算可求出结果.(2)由终边所过点以及二倍角公式可计算和的三角函数值,利用平方和为1求出,代入两角和的余弦可计算的值.【小问1详解】依题意,原式【小问2详解】因为是第一象限角,且终边过点,所以,,所以,,因为,且,所以,所以20、(1);(2).【解析】(1)由二倍角正余弦公式、辅助角公式可得,根据正弦函数的性质,应用整体法求单调减区间.(2)由正弦型函数的性质求值域,结合题设方程有解,即可确定参数范围.【小问1详解】,令,解得,所以函数的单调递减区间是.【小问2详解】∵,∴,又有解,所以m的取值范围21、(1);(2);(3)【解析】(1)由题利用即可求解;(2)当x<0,则﹣x>0,根据函数为奇函数f(﹣x)=﹣f(x)及当x>0时,,可得函数在x<0时的解析式,进而得到函数在R上的解析式;(3)根据奇函数在对称区间上单调性相同,结合指数函数的图象和性质,可分析出函数的单调性,进而将原不等式变形,解不等式可得实数的取值范围.【详解】解:(1)函数是定义在上的奇函数,解得(2)由(1)当,又是奇函数,(3)由及函数是定义在上的奇函数得由的图像知为R上的增函数,,【点睛】本题考查的知识点是函数奇偶性与单调性的综合,其中熟练掌握函数奇偶性的性质,及在对称区间上单调性的关系是解答本题的关键.22、(1)(2),【解析】(1)若选条件①,根据函数的周期性求出,再根据三角函数的平移变换规则及函数的对称性求出,即可得到函数解析式,再求出的值,最后代入计算可得;若选条件②,根据平面向量数量积的坐标表示及三角恒等变换化简函数解析式,再根据周
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国甜菊糖市场供需调查分析及投资价值研究报告
- 2024-2030年中国玻璃纤维池窑拉丝行业生产现状分析及投资规划研究报告
- 2024-2030年中国牙科行业发展展望投资策略分析报告版
- 2024-2030年中国煤质破碎炭项目可行性研究报告
- 2024-2030年中国热饮品行业市场销售模式及发展竞争力研究报告版
- 2024-2030年中国汽车物联网行业运营模式及未来发展趋势预测报告
- 2024-2030年中国汽车整车设计行业发展模式及投资前景预测报告
- 2024-2030年中国汽车发电机调节器行业前景预测与投资战略规划分析报告
- 2024年PCP项目提案报告
- 2023年高考全一轮微专题13-大气受热过程(解析版)
- 剪纸英文介绍paper cutting(课堂PPT)
- RSlogix500编程PPT课件
- 培训讲义电子版yunsdr相关02提高部分ver
- 通江县房地产市场调研报告
- (完整word版)SOFA评分表
- 研究生学术英语写作教程Unit-7-Concluding-Research
- 矿业企业投资法律尽职调查清单
- GB_T 325.1-2018 包装容器钢桶 第1部分:通用技术要求(高清正版)
- BAND-IN-A-BOX 2004 快速入门教程(上)
- 檐口检验批质量验收记录
- 鉴定附件1关于组织2018年甘肃省教育科学规划课题集中鉴定结题的通知
评论
0/150
提交评论