山东省青州第二中学2023届高一上数学期末学业质量监测模拟试题含解析_第1页
山东省青州第二中学2023届高一上数学期末学业质量监测模拟试题含解析_第2页
山东省青州第二中学2023届高一上数学期末学业质量监测模拟试题含解析_第3页
山东省青州第二中学2023届高一上数学期末学业质量监测模拟试题含解析_第4页
山东省青州第二中学2023届高一上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.为配制一种药液,进行了二次稀释,先在容积为40L的桶中盛满纯药液,第一次将桶中药液倒出用水补满,搅拌均匀,第二次倒出后用水补满,若第二次稀释后桶中药液含量不超过容积的60%,则V的最小值为()A.5 B.10C.15 D.202.已知是锐角,那么是A.第一象限角 B.第一象限角或第二象限角C.第二象限角 D.小于的正角3.下列函数中,既是偶函数,在上是增函数的是()A. B.C. D.4.已知,,,则的边上的高线所在的直线方程为()A. B.C. D.5.为了得到函数的图象,可以将函数的图象A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位6.抛掷两枚均匀的骰子,记录正面朝上的点数,则下列选项的两个事件中,互斥但不对立的是()A.事件“点数之和为奇数”与事件“点数之和为9”B.事件“点数之和为偶数”与事件“点数之和为奇数”C.事件“点数之和为6”与事件“点数之和为9”D.事件“点数之和不小于9”与事件“点数之和小于等于8”7.已知全集,集合,,则()A. B.C D.8.两圆和的位置关系是A.内切 B.外离C.外切 D.相交9.函数与的图象在上的交点有()A.个 B.个C.个 D.个10.已知函数函数有四个不同的零点,,,,且,则()A.1 B.2C.-1 D.11.函数的零点所在的大致区间是A. B.C. D.12.圆与直线相交所得弦长为()A.1 B.C.2 D.2二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.写出一个能说明“若函数满足,则为奇函数”是假命题的函数:______14.在直角坐标系中,直线的倾斜角________15.函数的零点个数是________.16.在中,,则_____________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数.(1)若不等式的解集为,求不等式的解集;(2)若,求不等式的解集.18.函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)当x∈[-2,2]时,求f(x)的值域.19.已知函数(1)求的最小正周期;(2)当时,求的最小值以及取得最小值时的集合20.已知函数f(x)=Asin(ωx+φ)的图象的一部分如图所示(1)求函数f(x)的解析式;(2)当时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x值21.如图,边长为的正方形所在平面与正三角形所在平面互相垂直,分别为的中点.(1)求四棱锥的体积;(2)求证:平面;(3)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点的位置,并证明你的结论;若不存在,请说明理由.22.已知函数的部分图象如下图所示.(1)求函数解析式,并写出函数的单调递增区间;(2)将函数图象上所有点的横坐标缩短到原来的(纵坐标不变),再将所得的函数图象上所有点向左平移个单位长度,得到函数的图象.若函数的图象关于直线对称,求函数在区间上的值域.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】依据题意列出不等式即可解得V的最小值.【详解】由,解得则V的最小值为10.故选:B2、D【解析】根据是锐角求出的取值范围,进而得出答案【详解】因为是锐角,所以,故故选D.【点睛】本题考查象限角,属于简单题3、C【解析】根据函数奇偶性的定义及幂函数、对数函数、指数函数的性质,对各选项逐一分析即可求解.【详解】解:对A:,定义域为R,因为,所以函数为偶函数,而根据幂函数的性质有在上单调递增,所以在上单调递减,故选项A错误;对B:,定义域为,因为,所以函数为奇函数,故选项B错误;对C:定义域为,因为,所以函数为偶函数,又时,根据对数函数的性质有在上单调递减,所以在上单调递增,故选项C正确;对D:,定义域为R,因为,所以函数为奇函数,故选项D错误.故选:C.4、A【解析】先计算,得到高线的斜率,又高线过点,计算得到答案.【详解】,高线过点∴边上的高线所在的直线方程为,即.故选【点睛】本题考查了高线的计算,利用斜率相乘为是解题的关键.5、D【解析】因为,所以将函数的图象向左平移个单位,选D.考点:三角函数图像变换【易错点睛】对y=Asin(ωx+φ)进行图象变换时应注意以下两点:(1)平移变换时,x变为x±a(a>0),变换后的函数解析式为y=Asin[ω(x±a)+φ];(2)伸缩变换时,x变为(横坐标变为原来的k倍),变换后的函数解析式为y=Asin(x+φ)6、C【解析】利用对立事件、互斥事件的定义直接求解【详解】对于,二者能同时发生,不是互斥事件,故错误;对于,二者不能同时发生,也不能同时不发生,是对立事件,故错误;对于,二者不能同时发生,但能同时不发生,是互斥但不对立事件,故正确;对于,二者不能同时发生,也不能同时不发生,是对立事件,故错误故选:7、C【解析】根据集合补集和交集运算方法计算即可.【详解】表示整数集Z里面去掉这四个整数后构成的集合,∴.故选:C.8、D【解析】根据两圆方程求解出圆心和半径,从而得到圆心距;根据得到两圆相交.【详解】由题意可得两圆方程为:和则两圆圆心分别为:和;半径分别为:和则圆心距:则两圆相交本题正确选项:【点睛】本题考查圆与圆的位置关系,关键是判断出圆心距和两圆半径之间的关系,属于基础题.9、B【解析】在上解出方程,得出方程解的个数即可.详解】当时,解方程,得,整理得,得或.解方程,解得、、、或.解方程,解得、、.因此,方程在上的解有个.故选B.【点睛】本题考查正切函数与正弦函数图象的交点个数,可以利用图形法解决,也转化为方程根的个数来处理,考查计算能力,属于中等题.10、D【解析】将问题转化为两个函数图象的交点问题,然后结合图象即可解答.【详解】有四个不同的零点,,,,即方程有四个不同的解的图象如图所示,由二次函数的对称性,可得.因为,所以,故故选:D11、C【解析】分别求出的值,从而求出函数的零点所在的范围【详解】由题意,,,所以,所以函数的零点所在的大致区间是,故选C.【点睛】本题考察了函数的零点问题,根据零点定理求出即可,本题是一道基础题12、D【解析】利用垂径定理可求弦长.【详解】圆的圆心坐标为,半径为,圆心到直线的距离为,故弦长为:,故选:D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、(答案不唯一)【解析】根据余弦型函数的性质求解即可.【详解】解:因为,所以的周期为4,所以余弦型函数都满足,但不是奇函数故答案为:14、##30°【解析】由直线方程得斜率,由斜率得倾斜角【详解】试题分析:直线化成,可知,而,故故答案为:15、3【解析】令f(x)=0求解即可.【详解】,方程有三个解,故f(x)有三个零点.故答案为:3.16、【解析】先由正弦定理得到,再由余弦定理求得的值【详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【点睛】本题考查了正弦定理和余弦定理的运用,属于基础题三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)或(2)答案见解析【解析】(1)由已知得,4是方程的两根,根据一元二次方程的根与系数的关系求得m,n,代入不等式,求解可得答案;(2)代入已知条件得,分,,,,,分别求解不等式可得答案.【小问1详解】解:依题意,的解集为,故,4是方程的两根,则,解得,故或,故不等式的解集为或.【小问2详解】解:依题意,,若,(*)式化为,解得;若,则;当时,的解为或;当时,(*)式化为,该不等式无解;当时,的解为;当时,的解为;综上所述,若,不等式的解集为;若,不等式的解集为或;若,不等式无解;若,不等式的解集为;若,不等式的解集为.18、(1);(2).【解析】(1)由最大值求出,由周期求出,由求出,进而求得的解析式;(2)由的范围求得的范围,从而得到的范围,进而求得的值域.【详解】(1)由图象可知,,,由可得,又,所以,所以.(2)当时,,所以,故的值域为.19、(1),(2),时【解析】(1)先利用同角平方关系及二倍角公式,辅助角公式进行化简,即可求解;(2)由的范围先求出的范围,结合余弦函数的性质即可求解【详解】解:(1),,,,故的最小正周期;(2)由可得,,当得即时,函数取得最小值.所以,时20、(1)(2),,,【解析】试题分析:(1)由图象知,,从而可求得,继而可求得;(2)利用三角函数间的关系可求得,利用余弦函数的性质可求得时的最大值与最小值及相应的值试题解析::(1)由图象知,∴∴图象过点,则,∵,∴,于是有(2).∵,∴当,即时,;当,即时,考点:(1)由的部分图象求其解析式;(2)正弦函数的定义域和值域.【方法点晴】本题考查由的部分图象确定其解析式,考查余弦函数的性质,考查规范分析与解答的能力,属于中档题.由三角函数图象求解析式时,主要是通过图象最高点或最低点得到振幅,通过图象的周期得到,最后代入特殊点得到的值;在求三角函数最值时,主要是通过辅角公式将其化为一般形式或,在得最值.21、(1);(2)证明见解析;(3)存在,为中点,证明见解析.【解析】(1)由等腰三角形三线合一性质和面面垂直性质定理可证得平面,由棱锥体积公式可求得结果;(2)连结交于点,由三角形中位线性质可证得,由线面平行判定定理可得到结论;(3)当为中点时,由正方形的性质、线面垂直的性质,结合线面垂直的判定可证得平面,由面面垂直的判定定理可证得结论.【详解】(1)为中点,为正三角形,.平面平面,平面平面,平面,平面.,,.(2)证明:连结交于点,连结.由四边形为正方形知点为的中点,又为的中点,,平面,平面,平面.(3)存在点,当为中点时,平面平面.证明如下:因为四边形是正方形,为的中点,,由(1)知:平面,平面,,又,平面.平面,平面平面.【点睛】关键点点睛:本题第三问考查了与面面垂直有关的存在性问题的处理,解题关键是能够根据平面确定只要在上,必有,由此只需找到与面中的另一条与相交的直线垂直即可,进而锁定的位置.22、(1),递增区间为;(2).【解析】(1)由三角函数的图象,求得函数的解析式,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得,根据的图象关于直线对称,求得的值,得到,结合三角函数的性质,即可求解.【详解】(1)由图象可知,,所以,所以,由图可求出最低点的坐标为,所以,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论