




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年高中数学说课稿模板集锦9篇高中数学说课稿篇1各位老师:今天我说课的题目是《条件语句》,内容选自于新课程人教A版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:一、教材分析.教材所处的地位和作用在此之前,学生已学习了算法的概念、程序框图与算法的基本逻辑结构、输入语句、输出语句和赋值语句,这为过渡到本节的学习起着铺垫作用。这一节课主要的内容为条件语句表示方法、结构以及用法。条件语句与程序图中的条件结构相对应,它是五种基本算法语句中的一种,。通过本节课的学习,学生将更加了解算法语句,并能用更全面的眼光看待前面学过的语句,并为以后的学习作好必要的准备。本节课对学生算法语言能力、有条理的思考与清晰地表达的能力,逻辑思维能力的综合提升具有重要作用。.教学的重点和难点重点:条件语句的表示方法、结构和用法;用条件语句表示算法。难点:理解条件语句的表示方法、结构和用法。二、教学目标分析.知识与技能目标:⑴正确理解条件语句的概念,并掌握其结构。⑵会应用条件语句编写程序。.过程与方法目标:⑴通过实例,发展对解决具体问题的过程与步骤进行分析的能力。⑵通过模仿,操作、探索、经历设计算法、设计框图、编写程序以解决具体问题的过程,发展应用算法的能力。⑶在解决具体问题的过程中学习条件语句,感受算法的重要意义。.情感,态度和价值观目标⑴能通过具体实例,感受和体会算法思想在解决具体问题中的意义,进一步体会算法思想的重要性,体验算法的有效性,增进对数学的了解,形成良好的数学学习情感,增强学习数学的乐趣。⑵通过感受和认识现代信息技术在解决数学问题中的重要作用和威力,形成自觉地将数学理论和现代信息技术结合的思想。⑶在编写程序解决问题的过程中,逐步养成扎实严谨的科学态度。三、教学方法与手段分析.教学方法:根据本节内容逻辑性强,学生不易理解的特点,本节教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这种方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。.教学手段:运用计算机、图形计算器辅助教学四、教学过程分析.创设情境(约4分钟)首先,我要求学生们编写程序,输入一元二次方程的系数,输出它的实数根。这样可以把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,因为要解决这一问题,根据我们之前所学的三种算法语句是无法解决的,这样就引出今天我们所要学习的内容。.探究新知(约8分钟)为了引入概念,我首先给出了一个基本的应用条件语句能够解决的例题:例1编写一个程序,求实数x的绝对值。整个过程由师生共同分析完成。老师要引导学生分析、研究例题中的两个程序,既要让学生们看到已知的三种语句,更要注意到未知的语句,即条件语句。总结上述例题的程序可得出条件语句的两种一般格式,接下来由师生共同对这两种格式进行研究..知识应用(约15分钟)此环节有两个例题例2编写程序,写出输入两个数a和b,将较大的数打印出来例3编写程序,使任意输入的3个整数按从大到小的顺序输出.先把解决问题的思路用程序框图表示出来,然后再根据程序框图给出的算法步骤,逐步把算法用对应的程序语句表达出来。(程序框图先由学生讨论,再统一,然后利用图形计算器演示,学生会惊喜的发现:自己也是个编程高手了!这样可以激发学生们的学习兴趣).练习巩固(约4分钟)课本第30页第3题练习可巩固学生对知识的理解,也可在练习中发现问题,使问题得到及时的解决。.课堂小结(约5分钟)条件语句的步骤、结构及功能.知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用.布置作业课本练习第3、4题[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。.板书设计1.2.2条件语句1、条件语句的一般格式IF-THEN-ELSE语句格式:框图:(2)IF-THEN语句格式:框图:2、小结2、例1引例例2例4例3高中数学说课稿篇2一、教材分析1、教材地位和作用二面角及其平面角的概念是立体几何最重要的概念之一。二面角的概念发展、完善了空间角的概念;而二面角的平面角不但定量描述了两相交平面的相对位置,同时它也是空间中线线、线面、面面垂直关系的一个汇集点。搞好本节课的学习,对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。教学大纲明确要求要让学生掌握二面角及其平面角的概念和运用。2、教学目标根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标:认知目标:(1)使学生正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。(2)进一步培养学生把空间问题转化为平面问题的化归思想。能力目标:以培养学生的创新能力和动手能力为重点。(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。教育目标:(1)使学生认识到数学知识来自实践,并服务于实践,从而增强学生应用数学的意识。(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。3、本节课教学的重、难点是两个过程的教学:(1)二面角的平面角概念的形成过程。(2)寻找二面角的平面角的方法的发现过程。其理由如下:(1)现行教材省略了概念的形成过程和方法的发现过程,没有反映出科学认识产生的辩证过程,与学生的认知规律相悖,给学生的学习造成了很大的困难,非常不利于学生创新能力、独立思考能力以及动手能力的培养。(2)现代认知学认为,揭示知识的形成过程,对学生学习新知识是十分必要的。同时通过展现知识的发生、发展过程,给学生思考、探索、发现和创新提供了最大的空间,可以使学生在整个教学过程中始终处于积极的思维状态,进而培养他们独立思考和大胆求索的精神,这样才能全面落实本节课的教学目标。二、指导思想和教学方法在设计本教学时,主要贯彻了以下两个思想:1、树立以学生发展为本的思想。通过构建以学习者为中心、有利于学生主体精神、创新能力健康发展的宽松的教学环境,提供学生自主探索和动手操作的机会,鼓励他们创新思考,亲身参与概念和方法的形成过程。2、坚持协同创新原则。把教材创新、教法创新以及学法创新有机地统一起来,因为只有教师创新地教,学生创新地学,才能营建一个有利于创新能力培养的良好环境。首先是教材创新。(1)在二面角的平面角概念引入上,我变课本上的“直接给出定义”为“类比—一猜想—一操作—一定义”,也就是变封闭的、逻辑演绎体系为开放的、探索性的发现过程。(2)在引入定义之后,例题讲解之前,引导学生发现寻找二面角的平面角的方法,为例题做好铺垫。(3)重新编排例题。其次是教法创新。采用多种创新的教学方法,包括问题解决法、类比发现法、研究发现法等教学方法。这组教学方法的特点是教师通过创设问题情境,引导学生逐步发现知识的形成过程,使教学活动真正建立在学生自主活动和探索的基础上,着力培养学生的创新能力。这组教学方法使得学生在解决问题的过程中学数学,用数学,不仅强调动脑思考,而且强调动手操作,亲身体验,注重多感官参与、多种心理能力的投入,通过学生全面、多样的主体实践活动,促进他们独立思考能力、动手能力等多方面素质的整体发展。教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用《几何画板》制作课件来辅助教学;止匕外,为加强直观教学,教师可预先做好一些模型。最后是学法创新。意在指导学生会创新地学。1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。3、会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新。三、程序安排(一)、二面角1、揭示概念产生背景。心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。问题情境1、我们是如何定量研究两平行平面的相对位置的?问题情境2、立几中常用距离和角来定量描述两个元素之间的相对位置,为什么不引入两平行平面所成的角?问题情境3、我们应如何定量研究两个相交平面之间的相对位置呢?通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为研究两相交平面的相对位置的需要,从而明确新课题研究的必要性,触发学生积极思维活动的展开。2、展现概念形成过程。高中数学说课稿篇3各位同仁,各位专家:我说课的课题是《任意角的三角函数》,内容取自苏教版高中实验教科书《数学》第四册第1。2节先对教材进行分析教学内容:任意角三角函数的定义、定义域,三角函数值的符号。地位和作用:任意角的三角函数是—教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。教学重点:任意角三角函数的定义教学难点:正确理解三角函数可以看作以实数为自变量的函数、初中用边长比值来定义转变为坐标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解;学情分析:学生已经掌握的内容,学生学习能力1。初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。2。我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。3。在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下知识目标:(1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,能力目标:(1)理解并掌握任意角的三角函数的定义;(2)正确理解三角函数是以实数为自变量的函数;(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。德育目标:(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;针对学生实际情况为达到教学目标须精心设计教学方法教法学法:温故知新,逐步拓展(1)在复习初中锐角三角函数的定义的基础上一步一步扩展内容,发展新知识,形成新的概念;(2)通过例题讲解分析,逐步引出新知识,完善三角定义运用多媒体工具(1)提高直观性增强趣味性。教学过程分析总体来说,由旧及新,由易及难,逐步加强,逐步推进先由初中的直角三角形中锐角三角函数的定义过度到直角坐标系中锐角三角函数的定义再发展到直角坐标系中任意角三角函数的定义给定定义后通过应用定义又逐步发现新知识拓展完善定义。具体教学过程安排引入:复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?由学生回答SinA=对边/斜边二BC/ABcosA=对边/斜边二AC/ABtanA=对边/斜边二BC/AC逐步拓展:在高中我们已经建立了直角坐标系,把“定义媒介”从直角三角形改为平面直角坐标系。我们知道,随着角的概念的推广,研究角时多放在直角坐标系里,那么三角函数的定义能否也放到坐标系去研究呢?引导学生发现B的坐标和边长的关系。进一步启发他们发现由于相似三角形的相似比导致OB上任一P点都可以代换B,把三角函数的定义发展到用终边上任一点的坐标来表示,从而锐角三角函数可以使用直角坐标系来定义,自然地,要想定义任意一个角三角函数,便考虑放在直角坐标中进行合理进行定义了从而得到知识点一:任意一个角的三角函数的定义提醒学生思考:由于相似比相等,对于确定的角A,这三个比值的大小和P点在角的终边上的位置无关。精心设计例题,引出新内容深化概念,完善定义例1已知角A的终边经过P(2,—3),求角A的三个三角函数值(此题由学生自己分析独立动手完成)例题变式1,已知角A的大小是30度,由定义求角A的三个三角函数值结合变式我们发现三个三角函数值的大小与角的大小有关,只会随角的大小而变化,符合当初函数的定义,而我们又一直称呼为三角函数,提出问题:这三个新的定义确实问是函数吗?为什么?从而引出函数极其定义域由学生分析讨论,得出结论知识点二:三个三角函数的定义域同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数例题变式2,已知角A的终边经过P(—2a,—3a)(a不为0),求角A的三个三角函数值解答中需要对变量的正负即角所在象限进行讨论,让学生意识到三角函数值的正负与角所在象限有关,从而导出第三个知识点知识点三:三角函数值的正负与角所在象限的关系由学生推出结论,教师总结符号记忆方法,便于学生记忆例题2:已知人在第二象限且sinA=0。2求cosA,tanA求cosA,tanA综合练习巩固提高,更为下节的同角关系式打下基础拓展,如果不限制A的象限呢,可以留作课外探讨小结回顾课堂内容课堂作业和课外作业以加强知识的记忆和理解课堂作业P161,2,4(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)课后分层作业(有利于全体学生的发展)必作P231(2),5(2),6(2)(4)选作P233,4板书设计(见PPT)高中数学说课稿篇4一、说教材:1、地位、作用和特点:《》是高中数学课本第册(修)的第章“”的第节内容,高中数学课本说课稿。本节是在学习了之后编排的。通过本节课的学习,既可以对的知识进一步巩固和深化,又可以为后面学习打下基础,所以是—的重要内容。此外,《》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是;高中数学说课稿篇5【一】教学背景分析1。教材结构分析《圆的方程》安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。2。学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3。教学目标(1)知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题。(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识。(3)情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣。根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4。教学重点与难点(1)重点:圆的标准方程的求法及其应用。(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题。为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:好学教育:【二】教法学法分析1。教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。2。学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申下面我从纵横两方面叙述我的教学程序与设计意图。首先:纵向叙述教学过程(一)创设情境—一启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知—一求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。(二)深入探究一一获得新知问题二1。根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2。如果圆心在,半径为时又如何呢?好学教育:这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。(三)应用举例一一巩固提高I。直接应用内化新知问题三1。写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点,圆心在点。2。写出圆的圆心坐标和半径。我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。II。灵活应用提升能力问题四1。求以点为圆心,并且和直线相切的圆的方程。2。求过点,圆心在直线上且与轴相切的圆的方程。3。已知圆的方程为,求过圆上一点的切线方程。你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是什么?我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。III。实际应用回归自然问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。好学教育:我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。(四)反馈训练一一形成方法问题六1。求过原点和点,且圆心在直线上的圆的标准方程。2。求圆过点的切线方程。3。求圆过点的切线方程。接下来是第四环节一一反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。(五)小结反思一一拓展引申1。课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法①圆心为,半径为r的圆的标准方程为:圆心在原点时,半径为r的圆的标准方程为:。②已知圆的方程是,经过圆上一点的切线的方程是:。2。分层作业(A)巩固型作业:教材P81—82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。3。激发新疑问题七1。把圆的标准方程展开后是什么形式?2。方程表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:横向阐述教学设计(一)突出重点抓住关键突破难点好学教育:求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题一一问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。(三)培养思维提升能力激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。高中数学说课稿篇6数学:人教A版必修3第二章第三节《变量之间的相关关系》说课稿各位老师:大家好!我叫,来自—。我说课的题目是《变量之间的相关关系》,内容选自于高中教材新课程人教A版必修3第二章第三节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:一、教材分析.教材所处的地位和作用—我们所要学习的主要内容就是统计,在前面的章节中我们已经对统计的相关知识作了大致的了解。本节课我们要继续探讨的是变量之间的相关关系,它为接下来要学习的两个变量的线性相关打下基础。这是一个与现实实际生活联系很紧密的知识,在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性..教学的重点和难点重点:①通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;②利用散点图直观认识两个变量之间的线性关系;难点:①变量之间相关关系的理解;②作散点图和理解两个变量的正相关和负相关二、教学目标分析1.知识与技能目标通过收集现实问题中两个有关联变量的数据认识变量间的相关关系2、过程与方法目标:明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.3、情感态度与价值观目标:通过对事物之间相关关系的了解,让学生们认识到现实中任何事物都是相互联系的辩证法思想。三、教学方法与手段分析1.教学方法:结合本节课的教学内容和学生的认知水平,在教法上,我采用“问答探究”式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。2。教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。四、教学过程分析㈠问题引出:请同学们如实填写下表(在空格中打“^”)然后回答如下问题:①“你的数学成绩对你的物理成绩有无影响?”②“如果你的数学成绩好,那么你的物理成绩也不会太差,如果你的数学成绩差,那么你的物理成绩也不会太好。”对你来说,是这样吗?同意这种说法的同学请举手。根据同学们回答的结果,让学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系。(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对。)教师总结如下:物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法。数学成绩的高低对物理成绩的高低是有一定影响的。但决非唯一因素,还有其它因素,如图所示(幻灯片给出):因此,不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少。但这两个变量是有一定关系的,它们之间是一种不确定性的关系。如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义。「设计意图」通过对身边事例的分析,引出我们今天将要学习的主要内容,由此可以激起学生们的学习兴趣,为接下来的学习打下良好的基础。㈡探究新知.概念形成教师提问:“像刚才这种情况在现实生活中是否还有?”学生们思考之后,请几位同学就提出的问题作出回答。老师就举出的例子,引导学生作出分析,然后由老师总结得出相关关系的概念。[两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。相关关系是一种非确定性关系。]「设计意图」从现实生活入手,抓住学生们的注意力,引导学生分析得出概念,让学生真正参与到概念的形成过程中来。.探究线性相关关系和其他相关关系「课件展示」例1在一次对人体脂肪和年龄关系的研究中,研究人员获得了一组样本数据:问题:针对于上述数据所提供的信息,你认为人体的脂肪含量与年龄之间有怎样的关系?[教师特别向学生强调在研究两个变量之间是否存在某种关系时,必须从散点图入手(向学生介绍什么是散点图)。并且引导学生从散点图上可以得出如下规律:(幻灯片给出)①如果所有的样本点都落在某一函数曲线上,那么变量之间具有函数关系(确定性关系);②如果所有的样本点都落在某一函数曲线的附近,那么变量之间具有相关关系(不确定性关系);③如果所有的样本点都落在某一直线附近,那么变量之间具有线性相关关系(不确定性关系)。「设计意图」通过对这个典型事例的分析,向学生们介绍什么是散点图,并总结出如何从散点图上判断变量之间关系的规律。下面我们用TI图形计算器作出这两个变量的散点图。学生实验:先把数据中成对出现的两个数分别作为横坐标、纵坐标,把数据输入到表格当中(第一列横坐标、第二列纵坐标);然后,用TI图形计算器作散点图:[引导学生观察作出的散点图,体会现实生活中两个变量之间的关系存在着不确定性。散点图中的散点并不在一条直线上,只是分布在一条直线的周围,即为线性相关关系。]「设计意图」通过实验让学生们感受散点图的主要形成过程,并由此引出线性相关关系。为后面回归直线和回归直线方程的学习做好铺垫。「课件展示」四组数据,请学生作出散点图,并观察每组数据的特点。根据四组数据,学生作出四个散点图。通过学生讨论、交流、用TI图形计算器展示、对比自己作出的散点图,我们引出线性相关关系,正负相关关系的概念。「设计意图」及时巩固知识,学生通过亲自动手作散点图,并交流讨论,进一步加深对散点图的理解,并由此引出正负相关关系的概念,突破难点。㈢例题讲解,深化认识「课件展示」例2一般说来,一个人的身高越高,他的人就越大,相应地,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系。为了对这个问题进行调查,我们收集了北京市某中学20__年高三年级96名学生的身高与右手一拃长的数据如下表。(1)根据上表中的数据,制成散点图。你能从散点图中发现身高与右手一拃长之间的近似关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系。(3)如果一个学生的身高是188cm,你能估计他的一拃大概有多长吗?「设计意图」这个例子很容易激起学生们的学习兴趣,由此可达到更好的教学效果。通过对这道题的解答,使对前面知识的认识更加牢固。㈣反思小结、培养能力⑴变量间相关关系、线性关系和正负相关关系⑵如何做散点图「设计意图」小节是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力㈤课后作业,自主学习习题2.31、2[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。高中数学说课稿篇7一、教材分析本节是人教A版高中数学必修三第二章《统计》中的第三节“变量间的相关关系”的'第二课时。在上一课时,学生已经懂得根据两个相关变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。这节课是在上一节课的基础上介绍了用线性回归的方法研究两个变量的相关性和最小二乘法的思想。从全章的内容上看,线性回归方程的建立不仅是本节的难点,也是—内容的难点之一。线性回归是最简单的回归分析,学好回归分析是学好统计学的重要基础。二、教学目标根据课标的要求及前面的分析,结合高二学生的认知特点确定本节课的教学目标如下:知识与技能:.知道最小二乘法和回归分析的思想;.能根据线性回归方程系数公式求出回归方程过程与方法:经历线性回归分析过程,借助图形计算器得出回归直线,增强数学应用和使用技术的意识。情感态度与价值观通过合作学习,养成倾听别人意见和建议的良好品质三、重点难点分析:根据目标分析,确定教学重点和难点如下:教学重点:.知道最小二乘法和回归分析的思想;.会求回归直线教学难点:建立回归思想,会求回归直线四、教学设计提出问题理论探究验证结论小结提升应用实践作业设计教学环节内容及说明创设情境探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:问题与引导设计师生活动设计意图问题1.利用图形计算器作出散点图,并指出上面的两个变量是正相关还是负相关?教师提问,学生通过动手操作得出散点图并回答以旧“探”新:对旧的知识进行简要的提问复习,为本节课学生能够更好的建构新的知识做好充分的准备;尤其为一些后进生能够顺利的完成本节课的内容提供必要的基础。教师引导:通过上节课的学习,我们知道散点图是研究两个变量相关关系的一种重要手段。下面,请同学们根据得出的散点图,思考下面的问题2.问题2.甲同学判断某人年龄在65岁时体内脂肪含量百分比可能为34,乙同学判断可能为25,而丙同学则判断可能为37,你对甲,乙,丙三个同学的判断有什么看法?学生能够表达自己的看法。有的学生可能会认为乙同学的判断是错误的;有的学生可能认为甲乙丙三个同学的判断都是对的,答案不唯一该问题具有探究性、启发性和开放性。鼓励学生大胆表达自己的看法。通过设计该问题,引导学生自己发现问题,注意到散点图中点的分布具有一定规律,体会观测点与回归直线的关系;进而引起学生的对本节课内容的兴趣。问题3.反思问题,你还可以提出哪些问题吗?小组讨论,看哪个小组提出的问题多在小组讨论的形式下和比较哪个小组提出的问题多,学生之间会充分的进行交流,提出问题通过小组讨论比较,调动学生的学习积极性和兴趣,活跃课堂气氛,达到学生自己提出问题的效果,培养学生的学生创新思维和问题意识。学生可能提出的问题:①为什么甲、丙同学的判断结果正确的可能性较大,而乙同学判断结果正确的可能性较小?②某人年龄在65岁时体内脂肪含量百分比最可能是多少?在其它年龄时呢?③这些样本数据揭示出两个相关变量之间怎样的关系呢?④怎样用数学的方法研究变量之间的相关关系呢?每个问题都是学生“火热的思考”成果高中数学说课稿篇8尊敬的各位评委、各位老师大家好!我说课的题目是《直线的点斜式方程》,选自人民教育出版社普通高中课程标准试验教科书数学必修2(A版),是第三章直线与方程中的第2节的第一课时3.2.1直线的点斜式方程的内容。下面我将从教学背景、教学方法、教学过程及教学特点等四个方面具体说明。一、教学背景的分析.教材分析直线的方程是学生在初中学习了一次函数的概念和图象及高中学习了直线的斜率后进行研究的。直线的方程属于解析几何学的基础知识,是研究解析几何学的开始,对后续研究两条直线的位置关系、圆的方程、直线与圆的位置关系、圆锥曲线等内容,无论在知识上还是方法上都是地位显要,作用非同寻常,是—的重点内容之一。“直线的点斜式方程”可以说是直线的方程的形式中最重要、最基本的形式,在此花多大的时间和精力都不为过。直线作为常见的最简单的曲线,在实际生活和生产实践中有着广泛的应用。同时在这一节中利用坐标法来研究曲线的数形结合、几何直观等数学思想将贯穿于我们整个高中数学教学。.学情分析我校的生源较差,学生的基础和学习习惯都有待加强。又由于刚开始学习解析几何,第一次用坐标法来求曲线的方程,在学习过程中,会出现“数”与“形”相互转化的困难。另外我校学生在探究问题的能力,合作交流的意识等方面更有待加强。根据上述教材分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:.教学目标(1)了解直线的方程的概念和直线的点斜式方程的推导过程及方法;(2)明确点斜式、斜截式方程的形式特点和适用范围;初步学会准确地使用直线的点斜式、斜截式方程;(3)从实例入手,通过类比、推广、特殊化等,使学生体会从特殊到一般再到特殊的认知规律;(4)提倡学生用旧知识解决新问题,通过体会直线的斜截式方程与一次函数的关系等活动,培养学生主动探究知识、合作交流的意识,并初步了解数形结合在解析几何中的应用。.教学重点与难点(1)重点:直线点斜式、斜截式方程的特点及其初步应用。(2)难点:直线的方程的概念,点斜式方程的推导及点斜式、斜截式方程的应用。二、教法学法分析.教法分析:根据学情,为了能调动学生学习的积极性,本节课采用“实例引导的启发式”问题教学法。帮助学生将几何问题代数化,用代数的语言描述直线的几何要素及其关系,进而将直线的问题转化为直线方程的问题,通过对直线的方程的研究,最终解决有关直线的一些简单的问题。另外可以恰当的利用多媒体课件进行辅助教学,激发学生的学习兴趣。.学法分析:学生从问题中尝试、总结、质疑、运用,体会学习数学的乐趣;通过推导直线的点斜式方程的学习,要了解用坐标法求方程的思想;通过一个点和方向可以确定一条直线,进而可求出直线的点斜式方程,要能体会“形”与“数”的转化思想。下面我就对具体的教学过程和设计加以说明:三、教学过程的设计及实施整个教学过程是由六个问题组成,共分为四个环节,学习或涉及四个概念:温故知新,澄清概念--一直线的方程深入探究,获得新知 点斜式拓展知识,再获新知 斜截式小结引申,思维延续 两点式平面上的点可以用坐标表示,直线的倾斜程度可以用斜率表示,那么平面上的直线如何表示呢?这就是本节要学习的内容。(一)温故知新,澄清概念--一直线的方程问题一:画出一次函数y=2x+1的图象;y=2x+1是一个方程吗?若是,那么方程的解与图象上的点的坐标有何关系?[学生活动]通过动手画图,思考并尝试用语言进行初步的表述。[教师活动]对于不同学生的表述进行分析、归纳,用规范的语言对方程和直线的方程进行描述。[设计意图]从学生熟知的旧知识出发澄清直线的方程的概念,试图做到“用学生已有的数学知识去学数学”,从而突破难点。通过对这个问题的研究,一方面认识到以方程的解为坐标的点在直线上,另一方面认识到直线上的点的坐标满足方程;从而使同学意识到直线可以由直线上任意一点P(x,y)的坐标x和y之间的等量关系来表示。问题二:若直线经过点A(-1,3),斜率为-2,点P在直线l上。(1)若点P在直线l上从A点开始运动,横坐标增加1时,点P的坐标是;(2)画出直线l,你能求出直线l的方程吗?(3)若点P在直线l上运动,设P点的坐标为(x,y),你会有什么方法找到x,y满足的关系式?[学生活动]学生独立思考5分钟,必要的话可进行分组讨论、合作交流。[教师活动]巡视。肯定学生的各种方法及大胆尝试的行为;并引导学生观察发现,得到当点P在直线l上运动时(除点人外),点P与定点A(-1,3)所确定的直线的斜率恒等于-2,体会“动中有静”的思维策略。[设计意图]复习斜率公式;待定系数法;初步体会坐标法。同时引导学生注意为什么要把分式化简?(若不化简,就少一点),感受数学简洁的美感和严谨性。还要指出这样的事实:当点P在直线l上运动时,P的坐标(x,y)满足方程2x+y-1=0.反过来,以方程2x+y-1=0的解为坐标的点在直线l上。把学生的思维引到用坐标法研究直线的方程上来,此时再把问题深入,进入第二环节。(二)深入探究,获得新知一一点斜式问题三:①若直线l经过点P0(x0,y0),且斜率为鼠求直线l的方程。②直线的点斜式方程能否表示经过P0(x0,y0)的所有直线?[学生活动]①学生叙述,老师板书,强调斜率公式与点斜式的区别。②指导学生用笔转一转不难发现,当直线l的倾斜角a=90°时,斜率卜不存在,当然不存在点斜式方程;讨论k=0的情况;观察并总结点斜式方程的特征。[设计意图]由特殊到一般的学习思路,突破难点,培养学生的归纳概括能力。通过对这个问题的探究使学生获得直线点斜式方程;由②知:当直线斜率卜不存在时,不能用点斜式方程表示直线,培养思维的严谨性,这时直线l与丫轴平行,它上面的每一点的横坐标都等于x0,直线l的方程是:x=x0;通过学生的观察讨论总结,明确点斜式方程的形式特点和适用范围,通过下面的例题和基础练习,突破重难点。问题四:分别求经过点且满足下列条件的直线的方程(1)斜率;(2)倾斜角;(3)与轴平行;(4)与轴垂直。[练习]P95.1、2。[学生活动]学生独立完成并展示或叙述,老师点评。[设计意图]充分用好教材的例题和习题,因为这些题都是专家精心编排的,充分体现必要性及合理性;做到及时反馈,便于反思本环节的教学,指导下个环节的安排;突破重点内容后,进入第三环节。(三)拓展知识,再获新知一一斜截式问题五:(1)一条直线与y轴交于点(0,3),直线的斜率为2,求这条直线的方程。(2)若直线l斜率为k,且与y轴的交点是P(0,b),求直线l的方程。[学生活动]学生独立完成后口述,教师板书。[设计意图]由一般到特殊再到一般,培养学生的推理能力,同时引出截距的概念及斜截式方程,强调截距不是距离。类比点斜式明确斜截式方程的形式特点和适用范围及几何意义,并讨论其与一次函数的关系。通过下面的基础练习,突破重点。[练习]P95.3。[设计意图]充分用好教材习题,及时反馈本环节的教学情况,指导下个环节的安排。(四)小结引申,思维延续--一两点式课堂小结1、有哪些收获?(点斜式方程:;斜截式方程:;求直线方程的方法:公式法、等斜率法、待定系数法。)2、哪些地方还没有学好?问题六:(1)直线l过(1,0)点,且与直线平行,求直线l的方程。(2)直线l过点(2,-1)和点(3,-3),求直线l的方程。[学生活动]学生独立思考并尝试自主完成,可以相互讨论,探讨解题思路。[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,有时间的话,可以让学生口述解题思路,也可以投影学生的证明过程,纠正出现的错误,规范书写的格式;没时间就布置分层作业。[设计意图](1)小题与上一节的平行综合,学生应该有思路求出方程;(2)小题解决方法较多,预设有利用公式法、等斜率法、待定系数法,让好一点的学生有一些发散思维的机会,以及课后学习的空间,使探究气氛有一点高潮。另外也为下节课研究直线的两点式方程作了重要的准备。分层作业必做题:P100.A组:1.(1)(2)(3)、5.选做题:P100.A组:1.(4)(5)(6).[设计意图]通过分层作业,做到因材施教,使不同的学生在数学上得到不同的发展,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展。四、教学特点分析(一)实例引导。在字母运算、公式推导之前,总是用实例作为铺垫,使学生有学习知识的可能和兴趣,关注学困生的成长与发展。(二)启发式教学。教学中总是以提问的方式叙述所学内容,如:1.直角坐标系内的所有直线都有点斜式方程吗?2.截距是距离吗?它可以是负数吗?3.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030儿童壶行业发展分析及投资前景与战略规划研究报告
- 2025-2030中国鸡蛋粉行业市场现状供需分析及投资评估规划分析研究报告
- 2025届天津市东丽区第一百中学高考仿真卷英语试题含答案
- 2025-2030中国风力涡轮机变速箱维修和翻新行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国面膜市场营销渠道分析及投资效益盈利性研究报告
- 山东省潍坊市示范中学2025年高三下学期第五次调研考试英语试题含答案
- 测量学考试试题及答案
- 厨师统招考试试题及答案
- 2025届凉山市重点中学高三下第一次测试英语试题含答案
- 辽宁省沈阳市第120中学2025届高三下学期一模考试英语试题含解析
- 立绘买断合同协议
- 2025春季学期国开电大本科《人文英语3》一平台在线形考综合测试(形考任务)试题及答案
- 针灸推拿治疗失眠的禁忌
- 利达消防L0188EL火灾报警控制器安装使用说明书
- 河南省驻马店市部分学校2024-2025学年高三下学期3月月考地理试题(含答案)
- 2025江苏盐城市射阳县临港工业区投资限公司招聘8人高频重点模拟试卷提升(共500题附带答案详解)
- 2025至2030年中国声音感应控制电筒数据监测研究报告
- DB50T 1041-2020 城镇地质安全监测规范
- 2025-2030年中国冰激凌市场需求分析与投资发展趋势预测报告
- 体育赛事运营方案投标文件(技术方案)
- 海绵城市施工质量保证措施
评论
0/150
提交评论