备战2022年中考数学:十大题型专项突破练习卷合集(含答案解析)可打印_第1页
备战2022年中考数学:十大题型专项突破练习卷合集(含答案解析)可打印_第2页
备战2022年中考数学:十大题型专项突破练习卷合集(含答案解析)可打印_第3页
备战2022年中考数学:十大题型专项突破练习卷合集(含答案解析)可打印_第4页
备战2022年中考数学:十大题型专项突破练习卷合集(含答案解析)可打印_第5页
已阅读5页,还剩635页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页码640页/总NUMPAGES总页数640页备战2022年中考数学题型:十大题型专练卷(合集)01操作类试题02规律探索类试题03一次函数的综合应用题04二次函数的实际应用题05方案型应用题06分类讨论试题07动态问题试题08与圆有关的证明与计算题09几何类比、拓展、探究题10二次函数的综合应用题备战2022年中考数学题型:十大题型专练卷(操作类试题-01)题型01操作类试题(原卷版)一、单选题1.如图,在中,,以点为圆心,适当长为半径画弧,分别交于点,再分别以点为圆心,大于为半径画弧,两弧交于点,作射线交边于点,则的面积是()A. B. C. D.2.如图,在中,将沿AC折叠后,点D恰好落在DC的延长线上的点E处.若,,则的周长为()A.12 B.15 C.18 D.213.如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接.下列结论一定正确的是()A. B. C. D.4.如图,菱形的对角线,交于点,,将沿点到点的方向平移,得到,当点与点重合时,点与点之间的距离为()A. B. C. D.5.4张长为a、宽为的长方形纸片,按如图的方式拼成一个边长为的正方形,图中空白部分的面积为,阴影部分的面积为.若,则a、b满足()A. B. C. D.6.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中是折痕.若正方形与五边形的面积相等,则的值是()A. B. C. D.7.如图,矩形与菱形的对角线均交于点,且,将矩形折叠,使点与点重合,折痕过点.若,,,则的长为()A. B. C. D.8.如图,直线是矩形的对称轴,点在边上,将沿折叠,点恰好落在线段与的交点处,,则线段的长是()A.8 B. C. D.109.如图,将沿边上的中线平移到的位置.已知的面积为16,阴影部分三角形的面积9.若,则等于()A.2 B.3 C.4 D.10.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC′沿BD翻折,得到△,DC与AB交于点E,连结,若AD=AC′=2,BD=3则点D到BC的距离为()A. B. C. D.二、填空题11.如图,已知△ABC,通过测量、计算得△ABC的面积约为____cm2.(结果保留一位小数)12.如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为点,D点的对称点为点,若,的面积为4,的面积为1,则矩形ABCD的面积等于_____.13.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.图中,____度.14.如图,有一张矩形纸片,.先将矩形纸片折叠,使边落在边上,点落在点处,折痕为;再将沿翻折,与相交于点,则的周长为_____.15.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为________cm.16.如图在正方形中,,将沿翻折,使点对应点刚好落在对角线上,将沿翻折,使点对应点落在对角线上,求______.17.如图,在中,,以顶点为圆心,适当长度为半径画弧,分别交于点,再分别以点为圆心,大于的长为半径画弧,两弧交于点,作射线交于点.若,则_____.18.七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为的正方形可以制作一副如图1所示的七巧板,现将这副七巧板在正方形内拼成如图2所示的“拼搏兔”造型(其中点分别与图2中的点重合,点在边上),则“拼搏兔”所在正方形的边长是_____.19.如图,过点C(3,4)的直线交轴于点A,∠ABC=90°,AB=CB,曲线过点B,将点A沿轴正方向平移个单位长度恰好落在该曲线上,则的值为________.20.如图,在每个小正方形的边长为1的网格中,的顶点A在格点上,B是小正方形边的中点,,,经过点A,B的圆的圆心在边AC上.(Ⅰ)线段AB的长等于_______________;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足,并简要说明点P的位置是如何找到的(不要求证明)_____.三、解答题21.按要求解答下列各题:(1)如图①,求作一点,使点到的两边的距离相等,且在的边上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);(2)如图②,表示两个港口,港口在港口的正东方向上.海上有一小岛在港口的北偏东方向上,且在港口的北偏西方向上.测得海里,求小岛与港口之间的距离.(结果可保留根号)22.图①,图②均为的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段,在图②中已画出线段,其中均为格点,按下列要求画图:⑴在图①中,以为对角线画一个菱形,且为格点;⑵在图②中,以为对角线画一个对边不相等的四边形,且为格点,.23.如图,在的方格中,的顶点均在格点上,试按要求画出线段EF(E,F均为格点),各画出一条即可.24.按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为圆E上一点,请用直尺(不带刻度)和圆规作出圆内接正方形;(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图:①如图2,在□ABCD中,E为CD的中点,作BC的中点F;②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC的高AH25.如图,将平行四边形纸片沿一条直线折叠,使点与点重合,点落在点处,折痕为.求证:(1);(2).26.图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段为边画一个,使其面积为6.(2)在图②中以线段为边画一个,使其面积为6.(3)在图③中以线段为边画一个四边形,使其面积为9,且.27.如图,矩形中,点在边上,将沿折叠,点落在边上的点处,过点作交于点,连接.(1)求证:四边形是菱形;(2)若,求四边形的面积.28.综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,的值是;(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.29.(1)如图1,菱形的顶点、在菱形的边上,且,请直接写出的结果(不必写计算过程)(2)将图1中的菱形绕点旋转一定角度,如图2,求;(3)把图2中的菱形都换成矩形,如图3,且,此时的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.30.如图,等边中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),关于DE的轴对称图形为.(1)当点F在AC上时,求证:DF//AB;(2)设的面积为S1,的面积为S2,记S=S1-S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时。求AE的长。备战2022年中考数学题型:十大题型专练卷(操作类试题-01)题型01操作类试题(解析版)一、单选题1.如图,在中,,以点为圆心,适当长为半径画弧,分别交于点,再分别以点为圆心,大于为半径画弧,两弧交于点,作射线交边于点,则的面积是()A. B. C. D.【答案】C【分析】利用基本作图得到AG平分∠BAC,利用角平分线的性质得到G点到AC的距离为1,然后根据三角形面积公式计算△ACG的面积.【详解】解:由作法得平分,点到的距离等于的长,即点到的距离为,所以的面积.故选:C.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了交平分线的性质.2.如图,在中,将沿AC折叠后,点D恰好落在DC的延长线上的点E处.若,,则的周长为()A.12 B.15 C.18 D.21【答案】C【分析】依据平行四边形的性质以及折叠的性质,即可得到,,,再根据是等边三角形,即可得到的周长为.【详解】由折叠可得,,,又,,,,由折叠可得,,,是等边三角形,的周长为,故选:C.【点睛】本题考查了平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题时注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3.如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接.下列结论一定正确的是()A. B. C. D.【答案】D【分析】利用旋转的性质得AC=CD,BC=EC,∠ACD=∠BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB判断选项B不一定正确即可.【详解】解:∵绕点顺时针旋转得到,∴AC=CD,BC=EC,∠ACD=∠BCE,∴∠A=∠CDA=;∠EBC=∠BEC=,∴选项A、C不一定正确∴∠A=∠EBC∴选项D正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB不一定等于,∴选项B不一定正确;故选:D.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.4.如图,菱形的对角线,交于点,,将沿点到点的方向平移,得到,当点与点重合时,点与点之间的距离为()A. B. C. D.【答案】C【分析】由菱形性质得到AO,BO长度,然后在利用勾股定理解出即可【详解】由菱形的性质得为直角三角形故选C【点睛】本题主要考查直角三角形勾股定理以及菱形的性质,本题关键在于利用菱形性质求出直角三角形的两条边5.4张长为a、宽为的长方形纸片,按如图的方式拼成一个边长为的正方形,图中空白部分的面积为,阴影部分的面积为.若,则a、b满足()A. B. C. D.【答案】D【分析】先用a、b的代数式分别表示,,再根据,得,整理,得,所以.【详解】解:,,∵,∴,整理,得,∴,∴.故选:D.【点睛】本题考查了整式的混合运算,熟练运用完全平方公式是解题的关键.6.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中是折痕.若正方形与五边形的面积相等,则的值是()A. B. C. D.【答案】A【分析】连接HF,设直线MH与AD边的交点为P,根据剪纸的过程以及折叠的性质得PH=MF且正方形EFGH的面积=×正方形ABCD的面积,从而用a分别表示出线段GF和线段MF的长即可求解.【详解】连接HF,设直线MH与AD边的交点为P,如图:由折叠可知点P、H、F、M四点共线,且PH=MF,设正方形ABCD的边长为2a,则正方形ABCD的面积为4a2,∵若正方形EFGH与五边形MCNGF的面积相等∴由折叠可知正方形EFGH的面积=×正方形ABCD的面积=,∴正方形EFGH的边长GF=,∴HF=GF=,∴MF=PH=,∴.故选A.【点睛】本题考查了剪纸问题、正方形的性质以及折叠的性质,根据剪纸的过程得到图形中边的关系是解决问题关键.7.如图,矩形与菱形的对角线均交于点,且,将矩形折叠,使点与点重合,折痕过点.若,,,则的长为()A. B. C. D.【答案】A【分析】延长交于点,连接、;由四边形是菱形,,得,,,,根据根据折叠性质,再证四边形为菱形,得是梯形的中位线,根据中位线性质求解.【详解】延长交于点,连接、;如图所示:则,为直角三角形,∵四边形是菱形,,∴,,,∴,由折叠的性质得:,,,∴,∵,∴,∴,∴,∴四边形为平行四边形,∵,∴四边形为菱形,∴,根据题意得:是梯形的中位线,∴,∴;故选:A.【点睛】考核知识点:矩形折叠,菱形判定和性质,三角函数.理解折叠的性质是关键.8.如图,直线是矩形的对称轴,点在边上,将沿折叠,点恰好落在线段与的交点处,,则线段的长是()A.8 B. C. D.10【答案】A【分析】根据正方形的性质及折叠的特点得到,,再根据含30°的直角三角形的性质即可求解.【详解】解:∵四边形是矩形,∴,由题意得:,,∴,由折叠的性质得:,,∴,,∴,∴,在中,,,∴,;故选:A.【点睛】此题主要考查正方形的性质,解题的关键是熟知直角三角形的性质与特点.9.如图,将沿边上的中线平移到的位置.已知的面积为16,阴影部分三角形的面积9.若,则等于()A.2 B.3 C.4 D.【答案】B【分析】由S△ABC=16、S△A′EF=9且AD为BC边的中线知,,根据△DA′E∽△DAB知,据此求解可得.【详解】、,且为边的中线,,,将沿边上的中线平移得到,,,则,即,解得或(舍),故选:.【点睛】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.10.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC′沿BD翻折,得到△,DC与AB交于点E,连结,若AD=AC′=2,BD=3则点D到BC的距离为()A. B. C. D.【答案】B【分析】连接CC′,交BD于点M,过点D作DH⊥BC于点H,由翻折知,△BDC≌△BDC’,BD垂直平分CC,证△ADC为等边三角形,利用解直角三角形求出DM=1,CM==,BM=2,在Rt△BMC'中,利用勾股定理求出BC′的长,在△BDC中利用面积法求出DH的长.【详解】解:如图,连接CC′,交BD于点M,过点D作DH⊥BC′于点H,∵AD=AC'=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC′,BD垂直平分CC′,∴DC=DC′=2,BC=BC′,CM=C′M,∴AD=AC'=DC′=2,∴△ADC′为等边三角形,∴∠ADC=∠AC′D=∠C′AC=60°,∵DC=DC′,∴∠DCC′=∠DC′C=×60°=30°,在Rt△CDM中,∠DC′C=30°,DC′=2,∴DM=1,C′M=DM=,·.BM=BD-DM=3-1=2,在Rt△BMC中,BC′=∴.BM=BD-DM=3-1=2,在Rt△C'DM中,∴∴故选B.【点睛】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.二、填空题11.如图,已知△ABC,通过测量、计算得△ABC的面积约为____cm2.(结果保留一位小数)【答案】1.9【分析】过点C作CD⊥AB的延长线于点D,测量出AB,CD的长,再利用三角形的面积公式即可求出△ABC的面积.【详解】解:过点C作CD⊥AB的延长线于点D,如图所示.

经过测量,AB=2.2cm,CD=1.7cm,(cm2).故答案为:1.9.【点睛】本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.12.如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为点,D点的对称点为点,若,的面积为4,的面积为1,则矩形ABCD的面积等于_____.【答案】.【分析】根据相似三角形的判断得到△A'EP~△D'PH,由三角形的面积公式得到S△A'EP,再由折叠的性质和勾股定理即可得到答案.【详解】∵A'E∥PF∴∠A'EP=∠D'PH又∵∠A=∠A'=90°,∠D=∠D'=90°∴∠A'=∠D'∴△A'EP~△D'PH又∵AB=CD,AB=A'P,CD=D'P∴A'P=D'P设A'P=D'P=x∵S△A'EP:S△D'PH=4:1∴A'E=2D'P=2x∴S△A'EP=∵∴∴A'P=D'P=2∴A'E=2D'P=4∴∴∴∴∴∴【点睛】本题考查矩形的性质、折叠的性质,解题的关键是掌握矩形的性质、折叠的性质.13.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.图中,____度.【答案】36【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【详解】,是等腰三角形,度.【点睛】本题主要考查了多边形的内角和定理和等腰三角形的性质.解题关键在于知道n边形的内角和为:180°(n﹣2).14.如图,有一张矩形纸片,.先将矩形纸片折叠,使边落在边上,点落在点处,折痕为;再将沿翻折,与相交于点,则的周长为_____.【答案】【分析】根据折叠的性质得到,根据矩形的性质得到,根据勾股定理求出,根据周长公式计算即可.【详解】解:由折叠的性质可知,,∴,∴,由题意得,四边形为矩形,∴,∵,∴,∴,由勾股定理得,,则的周长,故答案为:【点睛】考核知识点:矩形的折叠问题.运用矩形性质分析问题是关键.15.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为________cm.【答案】【分析】过点A作AH⊥DE,垂足为H,由旋转的性质可得AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,再根据等腰直角三角形的性质可得∠HAE=45°,AH=3,进而得∠HAF=30°,继而求出AF长即可求得答案.【详解】过点A作AH⊥DE,垂足为H,∵∠BAC=90°,AB=AC,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,∴AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,∴DE=,∠HAE=∠DAE=45°,∴AH=DE=3,∠HAF=∠HAE-∠CAE=30°,∴AF=,∴CF=AC-AF=,故答案为:.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,勾股定理,解直角三角形等知识,正确添加辅助线构建直角三角形、灵活运用相关知识是解题的关键.16.如图在正方形中,,将沿翻折,使点对应点刚好落在对角线上,将沿翻折,使点对应点落在对角线上,求______.【答案】【分析】作于点,构造直角三角形,运用勾股定理求解即可.【详解】作于点,由折叠可知:,,∴正方形边长∴.故答案为:.【点睛】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是正确寻找直角三角形解决问题,学会利用参数构建方程解决问题,17.如图,在中,,以顶点为圆心,适当长度为半径画弧,分别交于点,再分别以点为圆心,大于的长为半径画弧,两弧交于点,作射线交于点.若,则_____.【答案】.【分析】利用基本作图得BD平分,再计算出,所以,利用得到,然后根据三角形面积公式可得到的值.【详解】解:由作法得平分,∵,,∴,∴,∴,在中,,∴,∴.故答案为.【点睛】本题考查了作图基本作图:熟练掌握基本作图作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.18.七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为的正方形可以制作一副如图1所示的七巧板,现将这副七巧板在正方形内拼成如图2所示的“拼搏兔”造型(其中点分别与图2中的点重合,点在边上),则“拼搏兔”所在正方形的边长是_____.【答案】【分析】如图3中,连接CE交MN于O,先利用相似求出OM、ON的长,再利用勾股定理解决问题即可.【详解】如图3,连结交于.观察图1、图2可知,,.图3∴,∴,∴.在中,,同理可求得,∴,即“拼搏兔”所在正方形的边长是.故答案为:4【点睛】本题考查正方形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.19.如图,过点C(3,4)的直线交轴于点A,∠ABC=90°,AB=CB,曲线过点B,将点A沿轴正方向平移个单位长度恰好落在该曲线上,则的值为________.【答案】4【分析】分别过点B、点C作轴和轴的平行线,两条平行线相交于点M,与轴的交点为N.将C(3,4)代入可得b=-2,然后求得A点坐标为(1,0),证明△ABN≌△BCM,可得AN=BM=3,CM=BN=1,可求出B(4,1),即可求出k=4,由A点向上平移后落在上,即可求得a的值.【详解】分别过点B、点C作轴和轴的平行线,两条平行线相交于点M,与轴的交点为N,则∠M=∠ANB=90°,把C(3,4)代入,得4=6+b,解得:b=-2,所以y=2x-2,令y=0,则0=2x-2,解得:x=1,所以A(1,0),∵∠ABC=90°,∴∠CBM+∠ABN=90°,∵∠ANB=90°,∴∠BAN+∠ABN=90°,∴∠CBM=∠BAN,又∵∠M=∠ANB=90°,AB=BC,∴△ABN≌△BCM,∴AN=BM,BN=CM,∵C(3,4),∴设AN=m,CM=n,则有,解得,∴ON=3+1=4,BN=1,∴B(4,1),∵曲线过点B,∴k=4,∴,∵将点A沿轴正方向平移个单位长度恰好落在该曲线上,此时点A移动后对应点的坐标为(1,a),∴a=4,故答案为:4.【点睛】本题考查了反比例函数与几何图形的综合,涉及了待定系数法,全等三角形的判定与性质,点的平移等知识,正确添加辅助线,利用数形结合思想灵活运用相关知识是解题的关键.20.如图,在每个小正方形的边长为1的网格中,的顶点A在格点上,B是小正方形边的中点,,,经过点A,B的圆的圆心在边AC上.(Ⅰ)线段AB的长等于_______________;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足,并简要说明点P的位置是如何找到的(不要求证明)_____.【答案】(Ⅰ);(Ⅱ)如图,取圆与网格线的交点,连接与相交,得圆心;与网格线相交于点,连接并延长,交于点,连接并延长,与点的连线相交于点,连接,则点满足.【分析】(Ⅰ)根据勾股定理即可求出AB的长(Ⅱ)先确定圆心,根据∠EAF=取格点E、F并连接可得EF为直径,与AC相交即可确定圆心的位置,先在BO上取点P,设点P满足条件,再根据点D为AB的中点,根据垂径定理得出ODAB,再结合已知条件,得出,设PC和DO的延长线相交于点Q,根据ASA可得,可得OA=OQ,从而确定点Q在圆上,所以连接并延长,交于点,连接并延长,与点的连线相交于点,连接即可找到点P【详解】(Ⅰ)解:故答案为:(Ⅱ)取圆与网格线的交点,连接,与相交于点O,∵∠EAF=,∴EF为直径,∵圆心在边AC上∴点O即为圆心∵与网格线的交点D是AB中点,连接OD则ODAB,连接OB,∵,OA=OB∴∠OAB=∠OBA=,∠DOA=∠DOB=,在BO上取点P,并设点P满足条件,∵∵,∴∠APO=∠CPO=,设PC和DO的延长线相交于点Q,则∠DOA=∠DOB=∠POC=∠QOC=∴∠AOP=∠QOP=,∵OP=OP,∴∴OA=OQ,∴点Q在圆上,∴连接并延长,交于点,连接并延长,与点的连线相交于点,连接,则点P即为所求【点睛】本题主要考查了应用与设计作图、勾股定理、垂径定理、三角形的全等的性质与判定、等腰三角形的性质等知识,是一道综合性较强的题目,解题时首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.三、解答题21.按要求解答下列各题:(1)如图①,求作一点,使点到的两边的距离相等,且在的边上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明);(2)如图②,表示两个港口,港口在港口的正东方向上.海上有一小岛在港口的北偏东方向上,且在港口的北偏西方向上.测得海里,求小岛与港口之间的距离.(结果可保留根号)【答案】(1)见解析;(2).【分析】(1)作出∠ABC的平分线(以点B为圆心,以任意长为半径画弧,与AB、BC各交一点,然后分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧在三角形内部交于一点,过点B及这个点作射线)交AC于点P即可;(2)过点作于点,由题意得,,在中,求出AD的长,继而在中,求出AC长即可.【详解】(1)如图所示:作出的平分线标出点.(2)过点作于点,由题意得,,在中,,,在中,,(海里),答:小岛与港口之间的距离是海里.【点睛】本题考查了尺规作图——作角平分线,解直角三角形的应用,正确掌握作角平分线的方法是解(1)的关键,添加辅助线构建直角三角形是解(2)的关键.22.图①,图②均为的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段,在图②中已画出线段,其中均为格点,按下列要求画图:⑴在图①中,以为对角线画一个菱形,且为格点;⑵在图②中,以为对角线画一个对边不相等的四边形,且为格点,.【答案】(1)见解析;(2)见解析.【分析】(1)根据菱形的定义画出图形即可(答案不唯一).(2)利用数形结合的思想解决问题即可.【详解】解:(1)如图,菱形AEBF即为所求.(2)如图,四边形CGDH即为所求.【点睛】本题考查作图-应用与设计,菱形的判定和性质,直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.如图,在的方格中,的顶点均在格点上,试按要求画出线段EF(E,F均为格点),各画出一条即可.【答案】见解析.【分析】图1,根据格点的特征,利用全等三角形画出图形即可;图2:根据格点的特征,利用全等三角形及两锐角互余的三角形为直角三角形画出图形即可;图3:根据格点的特征,结合线段垂直平分线的判定定理画出图形即可.【详解】如图所示:【点睛】本题考查了格点三角形中的作图,正确利用格点的特征是解决问题的关键.24.按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为圆E上一点,请用直尺(不带刻度)和圆规作出圆内接正方形;(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图:①如图2,在□ABCD中,E为CD的中点,作BC的中点F;②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC的高AH【答案】(1)见解析;(2)①见解析;②见解析.【分析】(1)作直径AC,分别以A、C为圆心,以大于AC的一半长为半径画弧,在AC的两侧分别交于点M、N,作直线MN交圆于点B,D,四边形ABCD即为所求;(2)①连接AC、BD交于点O,则O为BD的中点,连接BE交CO于点G,连接DG并延长交BC于点F,则F即为所求;②如图,利用网格特点连接BM,则可得直线BM⊥AC,连接CN,则可得直线CN⊥AB,两线交于点E,连接AE并延长交BC于点H,则AH即为所求.【详解】(1)如图所示,四边形ABCD即为所求;(2)①如图所示,点F即为所求;②如图所示,AH即为所求.【点睛】本题考查了尺规作图,无刻度直尺作图,熟练掌握尺规作图的方法以及无刻度直尺作图的方法是解题的关键.25.如图,将平行四边形纸片沿一条直线折叠,使点与点重合,点落在点处,折痕为.求证:(1);(2).【答案】(1)见解析;(2)见解析.【分析】(1)依据平行四边形的性质,即可得到,由折叠可得,,即可得到;(2)依据平行四边形的性质,即可得出,,由折叠可得,,,即可得到,,进而得出.【详解】(1)四边形是平行四边形,,由折叠可得,,,,;(2)四边形是平行四边形,,,由折叠可得,,,,,又,.【点睛】本题考查了平行四边形的性质,折叠的性质,全等三角形的判定,熟练掌握平行四边形的性质以及折叠的性质是解题的关键.26.图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段为边画一个,使其面积为6.(2)在图②中以线段为边画一个,使其面积为6.(3)在图③中以线段为边画一个四边形,使其面积为9,且.【答案】(1)详见解析;(2)详见解析;(3)详见解析.【分析】(1)直接利用三角形的面积的计算方法得出符合题意的图形;(2)直接利用三角形面积求法得出答案;(3)根据矩形函数三角形的面积的求法进而得出答案.【详解】解:(1)如图①所示,即为所求;(2)如图②所示,即为所求;(3)如图③所示,四边形即为所求;【点睛】考核知识点:作三角形和四边形.利用三角形面积公式求解是关键.27.如图,矩形中,点在边上,将沿折叠,点落在边上的点处,过点作交于点,连接.(1)求证:四边形是菱形;(2)若,求四边形的面积.【答案】(1)详见解析;(2)【分析】(1)根据题意可得,因此可得,又,则可得四边形是平行四边形,再根据可得四边形是菱形.(2)设,则,再根据勾股定理可得x的值,进而计算出四边形的面积.【详解】(1)证明:由题意可得,,∴,∵,∴,∴,∴,∴,∴四边形是平行四边形,又∵∴四边形是菱形;(2)∵矩形中,,∴,∴,∴,设,则,∵,∴,解得,,∴,∴四边形的面积是:.【点睛】本题主要考查菱形的判定,关键在于首先证明其是平行四边形,再证明两条临边相等即可.28.综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,的值是;(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.【答案】(1)67.5°;;(2)四边形EMGF是矩形,理由见解析;(3)菱形FGCH或菱形EMCH(一个即可).【分析】(1)由正方形的性质可得∠B=90°,∠ACB=∠BAC=45°,根据折叠的性质可得∠BCE=22.5°,继而可求得∠BEC=67.5°,在Rt△AEN中,由sin∠EAN=可得AE=EN,即可求得;(2)四边形EMGF是矩形,理由如下:由折叠的性质可得∠1=∠2=∠3=∠4=22.5°,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,MC=ME,GC=GF,∠5=∠1=22.5°,∠6=∠4=22.5°,继而可得∠MEF=∠GFE=90°,再根据等腰直角三角形的性质可得∠CMG=45°,由三角形外角的性质得∠BME=∠1+∠5=45°,根据平角的定义求得∠EMG=90°,根据有三个角是直角的四边形是矩形即可得到四边形EMGF是矩形;(3)如图所示,四边形EMCH是菱形,理由如下:先证明四边形EMCH是平行四边形,再根据有一组邻边相等的平行四边形是菱形即可证明平行四边形EMCH是菱形.(同理四边形FGCH也是菱形).【详解】(1)∵四边形ABCD是正方形,∴∠B=90°,∠ACB=∠BCD=45°,∠BAC=∠BAD=45°,∵折叠,∴∠BCE=∠BCE=22.5°,BE=EN,∠ENC=∠B=90°,∴∠BEC=90°-22.5°=67.5°,∠ANE=90°,在Rt△AEN中,sin∠EAN=,∴,∴AE=EN,∴,故答案为:67.5°,;(2)四边形EMGF是矩形,理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90°,由折叠可知:∠1=∠2=∠3=∠4=22.5°,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠可知:MH、GH分别垂直平分EC,FC,∴MC=ME,GC=GF,∴∠5=∠1=22.5°,∠6=∠4=22.5°,∴∠MEF=∠GFE=90°,∵∠MCG=90°,CM=CG,∴∠CMG=45°,又∵∠BME=∠1+∠5=45°,∴∠EMG=180°-∠CMG-∠BME=90°,∴四边形EMGF是矩形;(3)如图所示,四边形EMCH是菱形,理由如下:由(2)∠BME=45°=∠BCA,∴EM//AC,∵折叠,∴CM=CH,EM=CM,∴EM=CH,∴EMCH,∴四边形EMCH是平行四边形,又CM=EM,∴平行四边形EMCH是菱形.(同理四边形FGCH是菱形,如图所示).【点睛】本题考查了折叠的性质,正方形的性质,矩形的判定,菱形的判定,解直角三角形等,正确把握相关知识是解题的关键.29.(1)如图1,菱形的顶点、在菱形的边上,且,请直接写出的结果(不必写计算过程)(2)将图1中的菱形绕点旋转一定角度,如图2,求;(3)把图2中的菱形都换成矩形,如图3,且,此时的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.【答案】(1);(2)(3)有变化,【分析】(1)连接,由菱形的顶点、在菱形的边上,且,易得,,共线,延长交于点,延长交于点,连接,交于点,则也为菱形,利用菱形对角线互相垂直,结合三角函数可得结论;(2)连接,,由和都是等腰三角形,易证与与,利用相似三角形的性质及菱形的性质可得结论;(3)连接,,易证和,利用相似三角形的性质可得结论.【详解】(1)连接,∵菱形的顶点、在菱形的边上,且,,,,,,共线,,,延长交于点,延长交于点,连接,交于点,则也为菱形,,,,∵,,∵为平行四边形,,.(2)如图,连接,,∵和都是等腰三角形,,,,,,∵,,在和中,,.(3)有变化.如图,连接,,∵,,,,,,,,,,,,,【点睛】本题是菱形与相似三角形,全等三角形,三角函数等知识点的综合运用,难度较大.30.如图,等边中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),关于DE的轴对称图形为.(1)当点F在AC上时,求证:DF//AB;(2)设的面积为S1,的面积为S2,记S=S1-S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时。求AE的长。【答案】(1)见解析;(2)存在最大值,最大值为;(3).【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.【详解】解:(1)∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,由折叠可知:DF=DC,且点F在AC上,∴∠DFC=∠C=60°,∴∠DFC=∠A,∴DF∥AB;(2)存在,如图,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2,∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°,∴MD=2,∴S△ABF的最小值=,∴S最大值=.(3)如图,过点作于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE,∴DF=DC=2,∠EFD=∠C=60°,∵GD⊥EF,∠EFD=60°,∴FG=1,DG=FG=,∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=-1,∴BG=,∵EH⊥BC,∠C=60°,∴CH=,EH=HC=,∵∠GBD=∠EBH,∠BGD=∠BHE=90°,∴△BGD∽△BHE,∴,∴,∴EC=∴AE=AC-EC=【点睛】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,熟练掌握是解题的关键.备战2022年中考数学题型:十大题型专练卷(规律探索类试题02)题型02规律探索类试题(原卷版)一、单选题1.如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A.﹣2 B.﹣1 C.0 D.12.在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点……第次移动到点,则点的坐标是()A. B. C. D.3.观察等式:;;已知按一定规律排列的一组数:、、、、、.若,用含的式子表示这组数的和是()A. B. C. D.4.计算的结果是()A. B. C. D.5.已知有理数,我们把称为a的差倒数,如:2的差倒数是,-1的差倒数是.如果,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么的值是()A.-7.5 B.7.5 C.5.5 D.-5.56.如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为().A. B. C. D.7.如图,在中,顶点,,,将与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转,则第70次旋转结束时,点D的坐标为()A. B. C.) D.8.南宋数学家杨辉在其著作《详解九章算法》中揭示了(为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”.则展开式中所有项的系数和是()A.128 B.256 C.512 D.1024二、填空题9.有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是_____,这2019个数的和是_____.10.观察下列一组数:,它们是按一定规律排列的,请利用其中规律,写出第个数__________(用含的式子表示)11.按一定规律排列的一列数依次为:,,,,…(a≠0),按此规律排列下去,这列数中的第n个数是_______.(n为正整数)12.如图,在平面直角坐标系中,函数和的图象分别为直线,过上的点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…依次进行下去,则点的横坐标为_____.13.如图,在以为直角顶点的等腰直角三角形纸片中,将角折起,使点落在边上的点(不与点,重合)处,折痕是.如图,当时,;如图,当时,;如图,当时,;……依此类推,当(为正整数)时,_____.14.观察下列各式:,,,请利用你发现的规律,计算:,其结果为____.15.有一列数,按一定规律排列成其中某三个相邻数的积是,则这三个数的和是_____.16.如图,直线分别交轴、轴于点和点,过点作,交轴于点,过点作轴,交直线于点;过点作,交轴于点,过点作轴,交直线于点,依此规律…,若图中阴影的面积为,阴影的面积为,阴影的面积为,则_______.17.如图,由两个长为2,宽为1的长方形组成“7”字图形.(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形,其中顶点位于轴上,顶点,位于轴上,为坐标原点,则的值为____.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点,摆放第三个“7”字图形得顶点,依此类推,…,摆放第个“7”字图形得顶点,…,则顶点的坐标为_____.18.在平面直角坐标系中,若干个边长为个单位长度的等边三角形,按如图中的规律摆放.点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,设第秒运动到点为正整数),则点的坐标是_____.19.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.20.将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵则第20行第19个数是_____________________21.如图,四边形是边长为的正方形,以对角线为边作第二个正方形,连接,得到;再以对角线为边作第三个正方形,连接,得到;再以对角线为边作第四个正方形,连接,得到……记、、的面积分别为、、,如此下去,则_____.22.如图所示,在平面直角坐标系中,一组同心圆的圆心为坐标原点,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,,,,,…都与x轴垂直,相邻两直线的间距为l,其中与轴重合若半径为2的圆与在第一象限内交于点,半径为3的圆与在第一象限内交于点,…,半径为的圆与在第一象限内交于点,则点的坐标为_____.(为正整数)23.如图,点在直线上,点的横坐标为,过作,交轴于点,以为边,向右作正方形,延长交轴于点;以为边,向右作正方形,延长交轴于点;以为边,向右作正方形延长交轴于点;按照这个规律进行下去,点的横坐标为_____(结果用含正整数的代数式表示)24.数轴上两点的距离为4,一动点从点出发,按以下规律跳动:第1次跳动到的中点处,第2次从点跳动到的中点处,第3次从点跳动到的中点处.按照这样的规律继续跳动到点(,是整数)处,那么线段的长度为_______(,是整数).25.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为_______.26.如图,在△ABC中,AB=5,AC=4,若进行一下操作,在边BC上从左到右一次取点D1、D2、D3、D4…;过点D1作AB、AC的平行线分别交于AC、AB与点E1、F1;过点D2作AB、AC的平行线分别交于AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交于AC、AB于点E3、F3…,则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)=______.27.在平面直角坐标系中,直线与轴交于点,如图所示,依次作正方形,正方形,正方形,正方形,…,点,,,,…在直线上,点,,,,…在轴正半轴上,则前个正方形对角线的和是_____.28.如图,点、、…在反比例函数的图象上,点、、……在反比例函数的图象上,,且,则(为正整数)的纵坐标为______.(用含的式子表示)29.如图,有一条折线,它是由过,,组成的折线依次平移8,16,24,…个单位得到的,直线与此折线有(且为整数)个交点,则的值为_____.三、解答题30.(阅读):数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.(理解):(1)如图,两个边长分别为、、的直角三角形和一个两条直角边都是的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2,行列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:________;(运用):(3)边形有个顶点,在它的内部再画个点,以()个点为顶点,把边形剪成若干个三角形,设最多可以剪得个这样的三角形.当,时,如图,最多可以剪得个这样的三角形,所以.①当,时,如图,;当,时,;②对于一般的情形,在边形内画个点,通过归纳猜想,可得(用含、的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.备战2022年中考数学题型:十大题型专练卷(规律探索类试题02)题型02规律探索类试题(解析版)一、单选题1.如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A.﹣2 B.﹣1 C.0 D.1【答案】B【分析】先计算点P走一个的时间,得到点P纵坐标的规律:以1,0,-1,0四个数为一个周期依次循环,再用2019÷4=504…3,得出在第2019秒时点P的纵坐标为是-1.【详解】解:点运动一个用时为秒.如图,作于D,与交于点E.在中,∵,,∴,∴,∴,∴第1秒时点P运动到点E,纵坐标为1;第2秒时点P运动到点B,纵坐标为0;第3秒时点P运动到点F,纵坐标为﹣1;第4秒时点P运动到点G,纵坐标为0;第5秒时点P运动到点H,纵坐标为1;…,∴点P的纵坐标以1,0,﹣1,0四个数为一个周期依次循环,∵,∴第2019秒时点P的纵坐标为是﹣1.故选:B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出点P纵坐标的规律:以1,0,-1,0四个数为一个周期依次循环.也考查了垂径定理.2.在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点……第次移动到点,则点的坐标是()A. B. C. D.【答案】C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点的坐标.【详解】,,,,,,…,,所以的坐标为,则的坐标是,故选C.【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.3.观察等式:;;已知按一定规律排列的一组数:、、、、、.若,用含的式子表示这组数的和是()A. B. C. D.【答案】C【分析】根据题意,一组数:、、、、、的和为250+251+252+…+299+2100==a+(2+22+…+250)a,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a+2a+22a+…+250a=a+(2+22+…+250)a,∵,,,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a+(2+22+…+250)a=a+(251-2)a=a+(2a-2)a=2a2-a,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.4.计算的结果是()A. B. C. D.【答案】B【分析】把每个分数写成两个分数之差的一半,然后再进行简便运算.【详解】解:原式===.故选B.【点睛】本题是一个规律计算题,主要考查了有理数的混合运算,关键是把分数乘法转化成分数减法来计算.5.已知有理数,我们把称为a的差倒数,如:2的差倒数是,-1的差倒数是.如果,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么的值是()A.-7.5 B.7.5 C.5.5 D.-5.5【答案】A【分析】求出数列的前4个数,从而得出这个数列以,,依次循环,且,再求出这100个数中有多少个周期,从而得出答案.【详解】解:∵,∴,,,……∴这个数列以-2,,依次循环,且,∵,∴,故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.6.如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为().A. B. C. D.【答案】C【分析】根据正方形的面积公式,即可推出操作次数与余下面积的关系式.【详解】解:正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,第一次:余下面积,第二次:余下面积,第三次:余下面积,当完成第2019次操作时,余下纸片的面积为,故选:C.【点睛】本题考查数字问题,熟练掌握计算法则是解题关键.7.如图,在中,顶点,,,将与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转,则第70次旋转结束时,点D的坐标为()A. B. C.) D.【答案】D【分析】先求出,再利用正方形的性质确定,由于,所以第70次旋转结束时,相当于与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.【详解】解:,,,四边形ABCD为正方形,,,,每4次一个循环,第70次旋转结束时,相当于与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转,点D的坐标为.故选D.【点睛】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:,,,,.8.南宋数学家杨辉在其著作《详解九章算法》中揭示了(为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”.则展开式中所有项的系数和是()A.128 B.256 C.512 D.1024【答案】C【分析】本题通过阅读理解寻找规律,观察可得(a+b)n(n为非负整数)展开式的各项系数的规律:首尾两项系数都是1,中间各项系数等于(a+b)n-1相邻两项的系数和,各项系数和是2n;【详解】观察可得(a+b)n(n为非负整数)展开式的各项系数的规律:各项系数和是2n;所以,展开式中所有项的系数和是29=512.故选:C【点睛】本题考查了完全平方公式,关键在于观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.二、填空题9.有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是_____,这2019个数的和是_____.【答案】02【分析】根据题意可以写出这组数据的前几个数,从而可以数字的变化规律,本题得以解决【详解】.解:由题意可得,这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,前6个数的和是:,,这2019个数的和是:,故答案为:0,2.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,每六个数重复出现.10.观察下列一组数:,它们是按一定规律排列的,请利用其中规律,写出第个数__________(用含的式子表示)【答案】【分析】首先观察分母的变化规律,在观察分子的规律,写成比例式化简即可.【详解】解:观察分母,3,5,9,17,33,…,可知规律为,观察分子的,1,3,6,10,15,…,可知规律为,∴;故答案为;【点睛】本题主要考查数的规律,这列题目是热点考题,应当熟练掌握.11.按一定规律排列的一列数依次为:,,,,…(a≠0),按此规律排列下去,这列数中的第n个数是_______.(n为正整数)【答案】.【分析】根据题意写出前四项的数据,第1个数为,第2个数为,第3个数为,第4个数为,进行观察,据此规律判断即可.【详解】第1个数为,第2个数为,第3个数为,第4个数为,…,所以这列数中的第n个数是.故答案为.【点睛】此题考查数列中的规律,解题关键在于观察找出规律12.如图,在平面直角坐标系中,函数和的图象分别为直线,过上的点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…依次进行下去,则点的横坐标为_____.【答案】【分析】根据题意得到的横坐标为,即可得到点的横坐标.【详解】解:由题意可得,,,,,,,…,可得的横坐标为,点的横坐标为:,故答案为.【点睛】本题考查数字类规律,解题的关键是读懂题意,得到的横坐标为.13.如图,在以为直角顶点的等腰直角三角形纸片中,将角折起,使点落在边上的点(不与点,重合)处,折痕是.如图,当时,;如图,当时,;如图,当时,;……依此类推,当(为正整数)时,_____.【答案】【分析】根据题意得到正切值的分子的规律和勾股数的规律,再进行计算即可得到答案.【详解】观察可知,正切值的分子是3,5,7,9,…,,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,,,中的中间一个.∴.故答案为.【点睛】本题考查规律,解题的关键是由题意得到规律.14.观察下列各式:,,,请利用你发现的规律,计算:,其结果为____.【答案】.【分析】根据题意找出规律,根据二次根式的性质计算即可.【详解】,故答案为:.【点睛】本题考查的是二次根式的化简、数字的变化规律,掌握二次根式的性质是解题的关键.15.有一列数,按一定规律排列成其中某三个相邻数的积是,则这三个数的和是_____.【答案】-384【分析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是,可以求得这三个数,从而可以求得这三个数的和.【详解】一列数为这列数的第个数可以表示为,其中某三个相邻数的积是,设这三个相邻的数为则即解得,,这三个数的和是:,故答案为:.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.16.如图,直线分别交轴、轴于点和点,过点作,交轴于点,过点作轴,交直线于点;过点作,交轴于点,过点作轴,交直线于点,依此规律…,若图中阴影的面积为,阴影的面积为,阴影的面积为,则_______.【答案】【分析】由直线可求出与轴交点的坐标,与轴交点的坐标,进而得到,的长,也可求出的各个内角的度数,是一个特殊的直角三角形,以下所作的三角形都是含有角的直角三角形,然后这个求出、、、、……根据规律得出.【详解】解:直线,当时,;当时,,又,,在中,,;同理可求出:,,;依次可求出:;;……因此:故答案为:.【点睛】本题主要考查同学们对规律的归纳总结,关键在于根据简单的图形寻找规律.17.如图,由两个长为2,宽为1的长方形组成“7”字图形.(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形,其中顶点位于轴上,顶点,位于轴上,为坐标原点,则的值为____.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点,摆放第三个“7”字图形得顶点,依此类推,…,摆放第个“7”字图形得顶点,…,则顶点的坐标为_____.【答案】(1);(2)【分析】(1)根据题意可得,,由同角的余角相等得,根据相似三角形判定得,由相似三角形性质即可求得答案.(2)根据题意标好字母,根据题意可得,,,,,在Rt△DCB中,由勾股定理求得,由(1)知,从而可得,,,结合题意易得:,根据相似三角形性质可得,,,,,从而可得,,观察这两点坐标知由点到点横坐标增加了,纵坐标增加了,依此可得出规律:的坐标为:,将n=2019代入即可求得答案.【详解】(1)依题可得,,,∵,,∴,又∵,∴,∴;(2)根据题意标好字母,如图,依题可得:,,,∴,由(1)知,∴,,易得:,∴,,,,∴,,∴,,∴由点到点横坐标增加了,纵坐标增加了,……∴的坐标为:,∴的坐标为:,故答案为,.【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.18.在平面直角坐标系中,若干个边长为个单位长度的等边三角形,按如图中的规律摆放.点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,设第秒运动到点为正整数),则点的坐标是_____.【答案】【分析】如图,作A1H⊥x轴,根据等边三角形的性质以及三角函数的知识可求出,,同理可得,,,,,由此发现点的坐标变化的规律即可求得结果.【详解】如图,作A1H⊥x轴,∵△OA1A2是等边三角形,∴∠A1OH=60°,OH=OA2=,∴A1H=A1O•sin60°=1×=,∴,,同理可得,,,,,由上可知,每一个点的横坐标为序号的一半,纵坐标每个点依次为:这样循环,2019÷6=336…3,故答案为.【点睛】本题考查了规律题,涉及了等边三角形的性质,解直角三角形的应用,通过推导得出点的坐标的变化规律是解题的关键.19.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为_______.【答案】3n+2.【分析】根据题意和图形,可以发现图形中棋子的变化规律,从而可以求得第n个“T”字形需要的棋子个数.【详解】解:由图可得,

图①中棋子的个数为:3+2=5,

图②中棋子的个数为:5+3=8,

图③中棋子的个数为:7+4=11,

……

则第n个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,

故答案为:3n+2.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.20.将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵则第20行第19个数是_____________________【答案】625【分析】根据题目中的数据和各行的数字个数的特点,可以求得第20行第19个数是多少,本题得以解决.【详解】由图可得,第一行1个数,第二行2个数,第三行3个数,…,则前20行的数字有:1+2+3+…+19+20=210个数,∴第20行第20个数是:1+3(210-1)=628,∴第20行第19个数是:628-3=625,故答案为:625.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中的数字的变化特点,知道第n个数可以表示为1+3(n-1).21.如图,四边形是边长为的正方形,以对角线为边作第二个正方形,连接,得到;再以对角线为边作第三个正方形,连接,得到;再以对角线为边作第四个正方形,连接,得到……记、、的面积分别为、、,如此下去,则_____.【答案】【分析】首先求出S1、S2、S3,然后猜测命题中隐含的数学规律,即可解决问题.【详解】四边形是正方形,,,,∴,,,同理可求:,…,,,故答案为:.【点睛】此题考查正方形的性质,规律型:图形变换,解题关键在于找到规律22.如图所示,在平面直角坐标系中,一组同心圆的圆心为坐标原点,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,,,,,…都与x轴垂直,相邻两直线的间距为l,其中与轴重合若半径为2的圆与在第一象限内交于点,半径为3的圆与在第一象限内交于点,…,半径为的圆与在第一象限内交于点,则点的坐标为_____.(为正整数)【答案】【分析】连,,,、、与轴分别交于、、,在中,,,由勾股定理得出,同理:,,……,得出的坐标为,的坐标为,的坐标为,……,得出规律,即可得出结果.【详解】连接,,,、、与轴分别交于、、,如图所示:在中,,∴,同理:,,……,∴的坐标为,的坐标为,的坐标为,……,…按照此规律可得点的坐标是,即,故答案为:.【点睛】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了勾股定理;由题意得出规律是解题的关键.23.如图,点在直线上,点的横坐标为,过作,交轴于点,以为边,向右作正方形,延长交轴于点;以为边,向右作正方形,延长交轴于点;以为边,向右作正方形延长交轴于点;按照这个规律进行下去,点的横坐标为_____(结果用含正整数的代数式表示)【答案】【分析】过点分别作轴,轴,轴,轴,轴,……垂足分别为,根据题意求出,得到图中所有的直角三角形都相似,两条直角边的比都是可以求出点的横坐标为:,再依次求出……即可求解.【详解】解:过点分别作轴,轴,轴,轴,轴,……垂足分别为点在直线上,点的横坐标为,点的纵坐标为,即:图中所有的直角三角形都相似,两条直角边的比都是点的横坐标为:,点的横坐标为:点C3的横坐标为:点的横坐标为:点的横坐标为:故答案为:【点睛】本题考查的是规律,熟练掌握相似三角形的性质是解题的关键.24.数轴上两点的距离为4,一动点从点出发,按以下规律跳动:第1次跳动到的中点处,第2次从点跳动到的中点处,第3次从点跳动到的中点处.按照这样的规律继续跳动到点(,是整数)处,那么线段的长度为_______(,是整数).【答案】【分析】根据题意,得第一次跳动到OA的中点A1处,即在离原点的长度为×4,第二次从A1点跳动到A2处,即在离原点的长度为()2×4,则跳动n次后,即跳到了离原点的长度为()n×4=,再根据线段的和差关系可得线段AnA的长度.【详解】由于OA=4,所有第一次跳动到OA的中点A1处时,OA1=OA=×4=2,同理第二次从A1点跳动到A2处,离原点的()2×4处,同理跳动n次后,离原点的长度为()n×4=,故线段AnA的长度为4-(n≥3,n是整数).故答案为4-.【点睛】考查了两点间的距离,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题注意根据题意表示出各个点跳动的规律.25.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为_______.【答案】【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,于是得到结论.【详解】解:根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,所以点C的坐标可表示为(2,4,2),故答案为:(2,4,2).【点睛】本题考查了规律型:点的坐标,等边三角形的性质,找出题中的规律是解题的关键.26.如图,在△ABC中,AB=5,AC=4,若进行一下操作,在边BC上从左到右一次取点D1、D2、D3、D4…;过点D1作AB、AC的平行线分别交于AC、AB与点E1、F1;过点D2作AB、AC的平行线分别交于AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交于AC、AB于点E3、F3…,则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)=______.【答案】40380.【分析】由D1E1∥AB,D1F1∥AC,可得△CD1E1∽△CBA,△BD1F1∽△BCA,根据相似三角形的对应边成比例结合AB=5,AC=4,可得,,再根据CD1+BD1=BC,可求得4D1E1+5D1F1=20,同理可得4D2E2+5D2F2=20,4D3E3+5D3F3=20,…,4D2019E2019+5D2019F2019=20,继而可求得答案.【详解】∵D1E1∥AB,D1F1∥AC,∴△CD1E1∽△CBA,△BD1F1∽△BCA,∴,,∵AB=5,AC=4,∴,,又∵CD1+BD1=BC,∴,∴4D1E1+5D1F1=20,同理:4D2E2+5D2F2=20,4D3E3+5D3F3=20,…,4D2019E2019+5D2019F2019=20,∴4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…+D2019F2019)=2019×20=40380,故答案

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论