




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DoingMonteCarloSimulationinMinitabStatisticalSoftwareDoingMonteCarlosimulationsinMinitabStatisticalSoftwareisveryeasy.ThisarticleillustrateshowtouseMinitabforMonteCarlosimulationsusingbothaknownengineeringformulaandaDOEequation.byPaulSheehyandEstonMartzMonteCarlosimulationusesrepeatedrandomsamplingtosimulatedataforagivenmathematicalmodelandevaluatetheoutcome.Thismethodwasinitiallyappliedbackinthe1940s,whenscientistsworkingontheatomicbombusedittocalculatetheprobabilitiesofonefissioninguraniumatomcausingafissionreactioninanotherWithuraniuminshortsupply,therewaslittleroomforexperimentaltrialanderror.Thescientistsdiscoveredthataslongastheycreatedenoughsimulateddata,theycouldcomputereliableprobabilities-andreducetheamountofuraniumneededfortesting.Today,simulateddataisroutinelyusedinsituationswhereresourcesarelimitedorgatheringrealdatawouldbetooexpensiveorimpractical.ByusingMinitab’sabilitytoeasilycreaterandomdata,youcanuseMonteCarlosimulationto:Simulatetherangeofpossibleoutcomestoaidindecision-makingForecastfinancialresultsorestimateprojecttimelinesUnderstandthevariabilityinaprocessorsystemFindproblemswithinaprocessorsystemManageriskbyunderstandingcost/benefitrelationshipsStepsintheMonteCarloApproachDependingonthenumberoffactorsinvolved,simulationscanbeverycomplex.Butatabasiclevel,allMonteCarlosimulationshavefoursimplesteps:IdentifytheTransferEquationTodoaMonteCarlosimulation,youneedaquantitativemodelofthebusinessactivity,plan,orprocessyouwishtoexplore.Themathematicalexpressionofyourprocessiscalledthe“transferequation.”Thismaybeaknownengineeringorbusinessformula,oritmaybebasedonamodelcreatedfromadesignedexperiment(DOE)orregressionanalysis.DefinetheInputParametersForeachfactorinyourtransferequation,determinehowitsdataaredistributed.Someinputsmayfollowthenormaldistribution,whileothersfollowatriangularoruniformdistribution.Youthenneedtodeterminedistributionparametersforeachinput.Forinstance,youwouldneedtospecifythemeanandstandarddeviationforinputsthatfollowanormaldistribution.CreateRandomDataTodovalidsimulation,youmustcreateaverylarge,randomdatasetforeachinput—somethingontheorder100,000instances.Theserandomdatapointssimulatethevaluesthatwouldbeseenoveralongperiodforeachinput.Minitabcaneasilycreaterandomdatathatfollowalmostanydistributionyouarelikelytoencounter.SimulateandAnalyzeProcessOutputWiththesimulateddatainplace,youcanuseyourtransferequationtocalculatesimulatedoutcomes.Runningalargeenoughquantityofsimulatedinputdatathroughyourmodelwillgiveyouareliableindicationofwhattheprocesswilloutputovertime,giventheanticipatedvariationintheinputs.ThosearethestepsanyMonteCarlosimulationneedstofollow.Here’showtoapplytheminMinitab.MonteCarloUsingaKnownEngineeringFormulaAmanufacturingcompanyneedstoevaluatethedesignofaproposedproduct:asmallpistonpumpthatmustpump12mloffluidperminute.Youwanttoestimatetheprobableperformanceoverthousandsofpumps,givennaturalvariationinpistondiameter(D),strokelength(L),andstrokesperminute(RPM).Ideally,thepumpflowacrossthousandsofpumpswillhaveastandarddeviationnogreaterthan0.2ml.Step1:IdentifytheTransferEquationThefirststepindoingaMonteCarlosimulationistodeterminethetransferequation.Inthiscase,youcansimplyuseanestablishedengineeringformulathatmeasurespumpflow:Flow(inml)=n(D/2)2*L*RPMStep2:DefinetheInputParametersNowyoumustdefinethedistributionandparametersofeachinputusedinthetransferequation.Thepumpspistondiameterandstrokelengthareknown,butyoumustcalculatethestrokes-per-minute(RPM)neededtoattainthedesired12ml/minuteflowrate.Volumepumpedperstrokeisgivenbythisequation:n(D/2)2*LGivenD=0.8andL=2.5,eachstrokedisplaces1.256ml.Sotoachieveaflowof12ml/minutetheRPMis9.549.Basedontheperformanceofotherpumpsyourfacilityhasmanufactured,youcansaythatpistondiameterisnormallydistributedwithameanof0.8cmandastandarddeviationof0.003cm.Strokelengthisnormallydistributedwithameanof2.5cmandastandarddeviationof0.15cm.Finally,strokesperminuteisnormallydistributedwithameanof9.549RPMandastandarddeviationof0.17RPM.Step3:CreateRandomDataNowyou’rereadytosetupthesimulationinMinitab.WithMinitabyoucaninstantaneouslycreate100,000rowsofsimulateddata.Startingwiththesimulatedpistondiameterdata,chooseCalc>RandomData>Normal.Inthedialogbox,enter100,000inNumberofrowsofdatatogenerate,andenter“D”asthecolumninwhichtostorethedata.Enterthemeanandstandarddeviationforpistondiameterintheappropriatefields.PressOKtopopulatetheworksheetwith100,000datapointsrandomlysampledfromthespecifiednormaldistribution.ThensimplyrepeatthisprocessforStrokeLength(L)andStrokesperMinute(RPM).Step4:SimulateandAnalyzeProcessOutputNowcreateafourthcolumnintheworksheet,Flow,toholdtheresultsofyourprocessoutputcalculations.Withtherandomlygeneratedinputdatainplace,youcansetupMinitab'scalculatortocalculatetheoutputandstoreitintheFlowcolumn.GotoCalc>Calculator,andsetuptheflowequationlikethis:Minitabwillquicklycalculatetheoutputforeachrowofsimulateddata.
Nowyou’rereadytolookattheresults.SelectStat>BasicStatistics>GraphicalSummaryandselecttheFlowcolumn.Minitabwillgenerateagraphicalsummarythatincludesfourgraphs:ahistogramofdatawithanoverlaidnormalcurve,boxplot,andconfidenceintervalsforthemeanandthemedian.ThegraphicalsummaryalsodisplaysAnderson-DarlingNormalityTestresults,descriptivestatistics,andconfidenceintervalsforthemean,median,andstandarddeviation.ThegraphicalsummaryofyourMonteCarlosimulationoutputwilllooklikethis:Fortherandomdatageneratedtowritethisarticle,themeanflowrateis12.004basedon100,000samples.Onaverage,weareontarget,butthesmallestvaluewas8.882andthelargestwas15.594.Thatsquitearange.Thetransmittedvariation(ofallcomponents)resultsinastandarddeviationof0.757ml,farexceedingthe0.2mltarget.Also,weseethatthe0.2mltargetfallsoutsideoftheconfidenceintervalforthestandarddeviation.Itlookslikethispumpdesignexhibitstoomuchvariationandneedstobefurtherrefinedbeforeitgoesintoproduction;MonteCarlosimulationwithMinitabletusfindthatoutwithoutincurringtheexpenseofmanufacturingandtestingthousandsofprototypes.Lestyouwonderwhetherthesesimulatedresultsholdup,tryityourself!Creatingdifferentsetsofsimulatedrandomdatawillresultinminorvariations,buttheendresul—anunacceptableamountofvariationintheflowrate-willbeconsistenteverytime.ThatsthepoweroftheMonteCarlomethod.MonteCarloUsingaDOEResponseEquationWhatifyoudon’tknowwhatequationtouse,oryouaretryingtosimulatetheoutcomeofauniqueprocess?Anelectronicsmanufacturerhasassignedyoutoimproveitselectrocleaningoperation,whichpreparesmetalpartsforelectroplating.Electroplatingletsmanufacturerscoatrawmaterialswithalayerofadifferentmetaltoachievedesiredcharacteristics.Platingwillnotadheretoadirtysurface,sothecompanyhasacontinuous-flowelectrocleaningsystemthatconnectstoanautomaticelectroplatingmachine.Aconveyerdipseachpartintoabathwhichsendsvoltagethroughthepart,cleaningit.InadequatecleaningresultsinahighRootMeanSquareAverageRoughnessvalue,orRMS,andpoorsurfacefinish.ProperlycleanedpartshaveasmoothsurfaceandalowRMS.Tooptimizetheprocess,youcanadjusttwocriticalinputs:voltage(Vdc)andcurrentdensity(ASF).Foryourelectrocleaningmethod,thetypicalengineeringlimitsforVdcare3to12volts.Limitsforcurrentdensityare10to150ampspersquarefoot(ASF).Step1:IdentifytheTransferEquationYoucannotuseanestablishedtextbookformulaforthisprocess,butyoucansetupaResponseSurfaceDOEinMinitabtodeterminethetransferequation.ResponsesurfaceDOEsareoftenusedtooptimizetheresponsebyfindingthebestsettingsfora"vitalfew"controllablefactors.Inthiscase,theresponsewillbethesurfacequalityofpartsaftertheyhavebeencleaned.TocreatearesponsesurfaceexperimentinMinitab,chooseStat>DOE>ResponseSurface>CreateResponseSurfaceDesign.Becausewehavetwofactors—voltage(Vdc)andcurrentdensity(ASF)—we’llselectatwo-factorcentralcompositedesign,whichhas13runs.AfterMinitabcreatesyourdesignedexperiment,youneedtoperformyour13experimentalruns,collectthedata,andrecordthesurfaceroughnessofthe13finishedparts.MinitabmakesiteasytoanalyzetheDOEresults,reducethemodel,andcheckassumptionsusingresidualplots.UsingthefinalmodelandMinitab'sresponseoptimizer,youcanfindtheoptimumsettingsforyourvariables.Inthiscase,yousetvoltsto7.74andASFto77.8toobtainaroughnessvalueof39.4.TheresponsesurfaceDOEyieldsthefollowingtransferequationfortheMonteCarlosimulation:Roughness=957.8-189.4(Vdc)-4.81(ASF)+12.26(VdC2)+0.0309(ASF2)Step2:DefinetheInputParametersNowyoucansettheparametricdefinitionsforyourMonteCarlosimulationinputs.(Thestandarddeviationsmustbeknownorestimatedbasedonexistingprocessknowledge.)Voltsarenormallydistributedwithameanof7.74Vdcandastandarddeviationof0.14Vdc.AmpsperSquareFoot(ASF)arenormallydistributedwithameanof77.8ASFandastandarddeviationof3ASF.Step3:CreateRandomDataWiththeparametersdefined,it'ssimpletocreate100,000rowsofsimulateddataforourtwoinputsusingMinitab'sCalc>RandomData>Normaldialog.Step4:SimulateandAnalyzeProcessOutputNowwecanusetheCalculatortoenterourformula,followedbyStat>BasicStatistics>GraphicalSummary.AnciewHXarlingTestAnciewHXarlingTestA-Squared4fi27.57Mbsh神确StDevamifl2.01S-10-KUIW545NHKXKJOMtinirmjml^tQtisrtile弛彻Median39.710JrdQtisitile尬MSMaximium45.135W5腕Mw&dsoeJritervalfar祢9%&Ofi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脚内侧传接球教学设计
- 餐饮服务质量控制模型-洞察阐释
- 社会各界对全民健身公共服务体系的期望与意见
- 消费电子企业经营管理方案
- 现代企业架构白皮书:数字化转型底层方法论
- 探索创新型基层劳动关系服务模式
- 2025至2030年中国液态白酒行业投资前景及策略咨询报告
- 2025至2030年中国泵上磁体行业投资前景及策略咨询报告
- 2025至2030年中国汉显通知型考勤机行业投资前景及策略咨询报告
- 2025至2030年中国氟利昂冷风机行业投资前景及策略咨询报告
- 2024年中储粮集团招聘笔试参考题库附带答案详解
- 20-樊登读书会第20本书-《高绩效教练》省公开课一等奖全国示范课微课金奖课件
- 茯苓规范化生产技术规程
- 关于深圳的英语作文
- 安全生产十大法则
- 电力系统安装服务市场分析及竞争策略分析报告
- 大学语文(第三版)教案 孔子论孝
- 《美术教育学》课件
- 大盛公路工程造价管理系统V2010操作手册
- 户外运动基地设施建设技术可行性分析
- 礼品行业供应链优化研究
评论
0/150
提交评论