




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DoingMonteCarloSimulationinMinitabStatisticalSoftwareDoingMonteCarlosimulationsinMinitabStatisticalSoftwareisveryeasy.ThisarticleillustrateshowtouseMinitabforMonteCarlosimulationsusingbothaknownengineeringformulaandaDOEequation.byPaulSheehyandEstonMartzMonteCarlosimulationusesrepeatedrandomsamplingtosimulatedataforagivenmathematicalmodelandevaluatetheoutcome.Thismethodwasinitiallyappliedbackinthe1940s,whenscientistsworkingontheatomicbombusedittocalculatetheprobabilitiesofonefissioninguraniumatomcausingafissionreactioninanotherWithuraniuminshortsupply,therewaslittleroomforexperimentaltrialanderror.Thescientistsdiscoveredthataslongastheycreatedenoughsimulateddata,theycouldcomputereliableprobabilities-andreducetheamountofuraniumneededfortesting.Today,simulateddataisroutinelyusedinsituationswhereresourcesarelimitedorgatheringrealdatawouldbetooexpensiveorimpractical.ByusingMinitab’sabilitytoeasilycreaterandomdata,youcanuseMonteCarlosimulationto:Simulatetherangeofpossibleoutcomestoaidindecision-makingForecastfinancialresultsorestimateprojecttimelinesUnderstandthevariabilityinaprocessorsystemFindproblemswithinaprocessorsystemManageriskbyunderstandingcost/benefitrelationshipsStepsintheMonteCarloApproachDependingonthenumberoffactorsinvolved,simulationscanbeverycomplex.Butatabasiclevel,allMonteCarlosimulationshavefoursimplesteps:IdentifytheTransferEquationTodoaMonteCarlosimulation,youneedaquantitativemodelofthebusinessactivity,plan,orprocessyouwishtoexplore.Themathematicalexpressionofyourprocessiscalledthe“transferequation.”Thismaybeaknownengineeringorbusinessformula,oritmaybebasedonamodelcreatedfromadesignedexperiment(DOE)orregressionanalysis.DefinetheInputParametersForeachfactorinyourtransferequation,determinehowitsdataaredistributed.Someinputsmayfollowthenormaldistribution,whileothersfollowatriangularoruniformdistribution.Youthenneedtodeterminedistributionparametersforeachinput.Forinstance,youwouldneedtospecifythemeanandstandarddeviationforinputsthatfollowanormaldistribution.CreateRandomDataTodovalidsimulation,youmustcreateaverylarge,randomdatasetforeachinput—somethingontheorder100,000instances.Theserandomdatapointssimulatethevaluesthatwouldbeseenoveralongperiodforeachinput.Minitabcaneasilycreaterandomdatathatfollowalmostanydistributionyouarelikelytoencounter.SimulateandAnalyzeProcessOutputWiththesimulateddatainplace,youcanuseyourtransferequationtocalculatesimulatedoutcomes.Runningalargeenoughquantityofsimulatedinputdatathroughyourmodelwillgiveyouareliableindicationofwhattheprocesswilloutputovertime,giventheanticipatedvariationintheinputs.ThosearethestepsanyMonteCarlosimulationneedstofollow.Here’showtoapplytheminMinitab.MonteCarloUsingaKnownEngineeringFormulaAmanufacturingcompanyneedstoevaluatethedesignofaproposedproduct:asmallpistonpumpthatmustpump12mloffluidperminute.Youwanttoestimatetheprobableperformanceoverthousandsofpumps,givennaturalvariationinpistondiameter(D),strokelength(L),andstrokesperminute(RPM).Ideally,thepumpflowacrossthousandsofpumpswillhaveastandarddeviationnogreaterthan0.2ml.Step1:IdentifytheTransferEquationThefirststepindoingaMonteCarlosimulationistodeterminethetransferequation.Inthiscase,youcansimplyuseanestablishedengineeringformulathatmeasurespumpflow:Flow(inml)=n(D/2)2*L*RPMStep2:DefinetheInputParametersNowyoumustdefinethedistributionandparametersofeachinputusedinthetransferequation.Thepumpspistondiameterandstrokelengthareknown,butyoumustcalculatethestrokes-per-minute(RPM)neededtoattainthedesired12ml/minuteflowrate.Volumepumpedperstrokeisgivenbythisequation:n(D/2)2*LGivenD=0.8andL=2.5,eachstrokedisplaces1.256ml.Sotoachieveaflowof12ml/minutetheRPMis9.549.Basedontheperformanceofotherpumpsyourfacilityhasmanufactured,youcansaythatpistondiameterisnormallydistributedwithameanof0.8cmandastandarddeviationof0.003cm.Strokelengthisnormallydistributedwithameanof2.5cmandastandarddeviationof0.15cm.Finally,strokesperminuteisnormallydistributedwithameanof9.549RPMandastandarddeviationof0.17RPM.Step3:CreateRandomDataNowyou’rereadytosetupthesimulationinMinitab.WithMinitabyoucaninstantaneouslycreate100,000rowsofsimulateddata.Startingwiththesimulatedpistondiameterdata,chooseCalc>RandomData>Normal.Inthedialogbox,enter100,000inNumberofrowsofdatatogenerate,andenter“D”asthecolumninwhichtostorethedata.Enterthemeanandstandarddeviationforpistondiameterintheappropriatefields.PressOKtopopulatetheworksheetwith100,000datapointsrandomlysampledfromthespecifiednormaldistribution.ThensimplyrepeatthisprocessforStrokeLength(L)andStrokesperMinute(RPM).Step4:SimulateandAnalyzeProcessOutputNowcreateafourthcolumnintheworksheet,Flow,toholdtheresultsofyourprocessoutputcalculations.Withtherandomlygeneratedinputdatainplace,youcansetupMinitab'scalculatortocalculatetheoutputandstoreitintheFlowcolumn.GotoCalc>Calculator,andsetuptheflowequationlikethis:Minitabwillquicklycalculatetheoutputforeachrowofsimulateddata.
Nowyou’rereadytolookattheresults.SelectStat>BasicStatistics>GraphicalSummaryandselecttheFlowcolumn.Minitabwillgenerateagraphicalsummarythatincludesfourgraphs:ahistogramofdatawithanoverlaidnormalcurve,boxplot,andconfidenceintervalsforthemeanandthemedian.ThegraphicalsummaryalsodisplaysAnderson-DarlingNormalityTestresults,descriptivestatistics,andconfidenceintervalsforthemean,median,andstandarddeviation.ThegraphicalsummaryofyourMonteCarlosimulationoutputwilllooklikethis:Fortherandomdatageneratedtowritethisarticle,themeanflowrateis12.004basedon100,000samples.Onaverage,weareontarget,butthesmallestvaluewas8.882andthelargestwas15.594.Thatsquitearange.Thetransmittedvariation(ofallcomponents)resultsinastandarddeviationof0.757ml,farexceedingthe0.2mltarget.Also,weseethatthe0.2mltargetfallsoutsideoftheconfidenceintervalforthestandarddeviation.Itlookslikethispumpdesignexhibitstoomuchvariationandneedstobefurtherrefinedbeforeitgoesintoproduction;MonteCarlosimulationwithMinitabletusfindthatoutwithoutincurringtheexpenseofmanufacturingandtestingthousandsofprototypes.Lestyouwonderwhetherthesesimulatedresultsholdup,tryityourself!Creatingdifferentsetsofsimulatedrandomdatawillresultinminorvariations,buttheendresul—anunacceptableamountofvariationintheflowrate-willbeconsistenteverytime.ThatsthepoweroftheMonteCarlomethod.MonteCarloUsingaDOEResponseEquationWhatifyoudon’tknowwhatequationtouse,oryouaretryingtosimulatetheoutcomeofauniqueprocess?Anelectronicsmanufacturerhasassignedyoutoimproveitselectrocleaningoperation,whichpreparesmetalpartsforelectroplating.Electroplatingletsmanufacturerscoatrawmaterialswithalayerofadifferentmetaltoachievedesiredcharacteristics.Platingwillnotadheretoadirtysurface,sothecompanyhasacontinuous-flowelectrocleaningsystemthatconnectstoanautomaticelectroplatingmachine.Aconveyerdipseachpartintoabathwhichsendsvoltagethroughthepart,cleaningit.InadequatecleaningresultsinahighRootMeanSquareAverageRoughnessvalue,orRMS,andpoorsurfacefinish.ProperlycleanedpartshaveasmoothsurfaceandalowRMS.Tooptimizetheprocess,youcanadjusttwocriticalinputs:voltage(Vdc)andcurrentdensity(ASF).Foryourelectrocleaningmethod,thetypicalengineeringlimitsforVdcare3to12volts.Limitsforcurrentdensityare10to150ampspersquarefoot(ASF).Step1:IdentifytheTransferEquationYoucannotuseanestablishedtextbookformulaforthisprocess,butyoucansetupaResponseSurfaceDOEinMinitabtodeterminethetransferequation.ResponsesurfaceDOEsareoftenusedtooptimizetheresponsebyfindingthebestsettingsfora"vitalfew"controllablefactors.Inthiscase,theresponsewillbethesurfacequalityofpartsaftertheyhavebeencleaned.TocreatearesponsesurfaceexperimentinMinitab,chooseStat>DOE>ResponseSurface>CreateResponseSurfaceDesign.Becausewehavetwofactors—voltage(Vdc)andcurrentdensity(ASF)—we’llselectatwo-factorcentralcompositedesign,whichhas13runs.AfterMinitabcreatesyourdesignedexperiment,youneedtoperformyour13experimentalruns,collectthedata,andrecordthesurfaceroughnessofthe13finishedparts.MinitabmakesiteasytoanalyzetheDOEresults,reducethemodel,andcheckassumptionsusingresidualplots.UsingthefinalmodelandMinitab'sresponseoptimizer,youcanfindtheoptimumsettingsforyourvariables.Inthiscase,yousetvoltsto7.74andASFto77.8toobtainaroughnessvalueof39.4.TheresponsesurfaceDOEyieldsthefollowingtransferequationfortheMonteCarlosimulation:Roughness=957.8-189.4(Vdc)-4.81(ASF)+12.26(VdC2)+0.0309(ASF2)Step2:DefinetheInputParametersNowyoucansettheparametricdefinitionsforyourMonteCarlosimulationinputs.(Thestandarddeviationsmustbeknownorestimatedbasedonexistingprocessknowledge.)Voltsarenormallydistributedwithameanof7.74Vdcandastandarddeviationof0.14Vdc.AmpsperSquareFoot(ASF)arenormallydistributedwithameanof77.8ASFandastandarddeviationof3ASF.Step3:CreateRandomDataWiththeparametersdefined,it'ssimpletocreate100,000rowsofsimulateddataforourtwoinputsusingMinitab'sCalc>RandomData>Normaldialog.Step4:SimulateandAnalyzeProcessOutputNowwecanusetheCalculatortoenterourformula,followedbyStat>BasicStatistics>GraphicalSummary.AnciewHXarlingTestAnciewHXarlingTestA-Squared4fi27.57Mbsh神确StDevamifl2.01S-10-KUIW545NHKXKJOMtinirmjml^tQtisrtile弛彻Median39.710JrdQtisitile尬MSMaximium45.135W5腕Mw&dsoeJritervalfar祢9%&Ofi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生职业生涯规划与个人能力展示
- 2024秋八年级道德与法治上册 第四单元 维护国家利益 第九课 树立总体国家安全观 第1框 认识总体国家安全观教学设计 新人教版
- 三年级信息技术上册 第六课 巧玩电脑小游戏教学设计 华中师大版
- Unit 3 Weather(教学设计)-2023-2024学年人教PEP版英语四年级下册
- 2024-2025学年高中生物 第三章 酶的应用技术实践 第二节 制备和应用固定化酶教学设计 苏教版选修1
- 《除数是一位数的除法 - 笔算除法》(教学设计)-2023-2024学年三年级下册数学人教版
- 三年级下册道德与法治教学设计-6《规则守护我们成长》第二课时 守规才有序 苏教版
- 2023九年级数学上册 第四章 图形的相似8 图形的位似第1课时 位似图形及其画法教学设计 (新版)北师大版
- 血浆站后厨工作总结
- 2023二年级数学下册 8 克和千克第1课时 克和千克的认识教学设计 新人教版
- (正式版)SHT 3045-2024 石油化工管式炉热效率设计计算方法
- 2024年中储粮集团招聘笔试参考题库附带答案详解
- 基于大概念的高中历史大单元教学
- (2024年)保安培训图文课件
- 《养老护理员》-课件:协助卧床老年人使用便器排便
- 统编版语文八年级下册全册大单元整体教学设计表格式教案
- 特种加工技术课件
- 提升教师数字素养培训方案
- 康恩贝流程优化与ERP实施项目方案建议书20150612V1.0
- 坑机安全操作规程范本
- 饲料厂奖惩制度汇编
评论
0/150
提交评论