下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
微积分一练习题及答案微积分一练习题及答案微积分一练习题及答案微积分一练习题及答案编制仅供参考审核批准生效日期地址:电话:传真:邮编:《微积分(1)》练习题单项选择题1.设存在,则下列等式成立的有()A.B.C.D.2.下列极限不存在的有()A.B.C.D.3.设的一个原函数是,则()A.B.C.D.4.函数在上的间断点为()间断点。A.跳跃间断点;B.无穷间断点;C.可去间断点;D.振荡间断点5.设函数在上有定义,在内可导,则下列结论成立的有()当时,至少存在一点,使;对任何,有;当时,至少存在一点,使;D.至少存在一点,使;6.已知的导数在处连续,若,则下列结论成立的有()A.是的极小值点;B.是的极大值点;C.是曲线的拐点;D.不是的极值点,也不是曲线的拐点;填空:1.设,可微,则2.若,则3.过原点作曲线的切线,则切线方程为4.曲线的水平渐近线方程为铅垂渐近线方程为5.设,则计算题:(1)(2)(3)(4)求(5)求试确定,,使函数在处连续且可导。试证明不等式:当时,设,其中在上连续,在内存在且大于零,求证在内单调递增。《微积分》练习题参考答案单项选择题1.(B)2.(C)3.(A)4.(C)5.(B)6.(B)填空:(每小题3分,共15分)1.2.3.4.,5.,三,计算题:(1)(2)(3)(4)求(5)求又(试确定,,使函数在处连续且可导。(8分)解:,函数在处连续,(1)函数在处可导,故(2)由(1)(2)知试证明不等式:当时,(8分)证:(法一)设则由拉格朗日中值定理有整理得:法二:设故在时,为增函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 克孜勒苏职业技术学院《移动应用开发A》2023-2024学年第一学期期末试卷
- 江苏联合职业技术学院《全球卫生》2023-2024学年第一学期期末试卷
- 湖南农业大学《数字视频处理》2023-2024学年第一学期期末试卷
- 湖北孝感美珈职业学院《公共部门人力资源管理实验》2023-2024学年第一学期期末试卷
- 【物理】《功率》(教学设计)-2024-2025学年人教版(2024)初中物理八年级下册
- 高考物理总复习《电场》专项测试卷含答案
- 重庆文理学院《建筑设计二》2023-2024学年第一学期期末试卷
- 重庆工程职业技术学院《数字化设计与制造双语》2023-2024学年第一学期期末试卷
- 浙江经济职业技术学院《太极拳》2023-2024学年第一学期期末试卷
- 中国美术学院《电工与电子技术(B)》2023-2024学年第一学期期末试卷
- 一年级口算天天练(可直接打印)
- 软件无线电原理与应用第3版 课件 【ch02】软件无线电理论基础
- 国网山东电力生产技术改造原则
- 铁路运输安全现场管理
- 2023年某保险公司春节经营教材
- 刘都才-南方水稻田杂草发生动态及防控技术
- 全自动化学发光分析仪操作规程
- 深蓝的故事(全3册)
- GB/T 42461-2023信息安全技术网络安全服务成本度量指南
- 职校开学第一课班会PPT
- 央国企信创白皮书 -基于信创体系的数字化转型
评论
0/150
提交评论