《解简易方程》教学反思_第1页
《解简易方程》教学反思_第2页
《解简易方程》教学反思_第3页
《解简易方程》教学反思_第4页
《解简易方程》教学反思_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第《解简易方程》教学反思《解简易方程》教学反思1

长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数,解简易方程教学反思。到了中学又要另起炉灶,引入等式的根本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的根本性质,并以此为根底导出解方程的方法。这就较为彻底地防止了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接,教学反思《解简易方程教学反思》。通教材的老师也主张用等式的根本性质解方程。

在我的教学过程中却出现了这样的问题,利用等式的根本性质解形如x+a=b与x-a=b,ax=b与x÷a=b一类的方程,学生方法掌握起来比拟简单。但写起来比拟繁琐。然而遇到a-x=b、a÷x=b的方程时,由于小学生还没有学习正负数的四那么运算,如果利用等式的根本性质解,方程变形的过程及算理解释比拟麻烦;但是在教学过程中我们不可防止地会遇到根据现实情境从顺向思考列出X当作减数、当作除数的方程,要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否那么,我们的教学就会显得片面和狭隘。于是,我又要求学生遇到X当作减数、当作除数的方程时,要求学生会用减法和除法各局部之间的关系来做。但是,我发现这让有些孩子无所适从。我现在感到很困惑,我们到底怎样做才是合理得呢?恳请各位老师指教。

《解简易方程》教学反思2

义务教育小学阶段五年级数学上册第五单元《简易方程》在解简易方程呈现五个例题。

其中例1以X+3=9为例,讨论了X加减某一数的方程解法。教学重点是运用等式的性质1解方程,并引入方程的解与解方程两个概念。如下图:

为了便于给出解方程全过程的直观展示,例题中借助三幅天平演示图,展现了解方程的完整思考过程,这一点值得称道,对于学生来说,这样的图示剖析,有助于学生自我探究理解,学习解简易方程,从而学会解简易方程的方法。

但问题来了。在例1当中没有完整的解题过程示范,只有检验过程的示范。如上图所示。而完整的示范出现在例3,经历了例1运用等式性质1解方程,例2利用等式性质2解方程,递进至例3完成方程转化解方法〔未知数位于减数、除数位置,属逆向解方程〕才有一个完整的解方程的示范。如下列图所示:

从学习心理学来讲,学生在接触新知识点的第一印象极为重要,第一次学习新知,是由不知到知,由不懂到懂而迈出的重要第一步。这一步的踏出对学生而言异常重要。第一次是新的,大脑对新知的接受是处于兴奋状态,此时的理解记忆刻痕是最深的,无论到的是直,是斜,一旦留下,再想更改那就难上加难。作为老师一定要重视学生的第一次接触新知,“课上损失课外补〞更是事倍功半。

学材的编排着实让我有点挠头,明明能够一目了解,通过阅读自学就能搞定的解方程标准,这样一个根底性的知识点,非要放在例3才有完整呈现,在实际的课堂教学中有点不得劲儿,也有些不符合学生学习的认知规律。

《解简易方程》教学反思3

《解方程》是人教课标版小学数学五年级上册第四单元内容,本节课是在学生学习了用字母表示数和方程的根底上进行教学的,新课程的解方程一改以往的由加减乘除各局部之间的关系的引入方法,运用更能让学生明白的天平平衡的原理来引入,《解简易方程》教学反思。解题的根本原理从未改变——等式的根本性质,即:方程的两边同时加上或减去相同的数,除以或乘以同一个不为零的数,方程的两边仍相等。

这节课内容不是新内容,但方法却是新方法,我认为设计教学时应将“方程的解〞和“解方程〞这两个概念放到例题1的后面引入,能使学生对概念理解更充分,印象更深刻。

教学中我先利用课件演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打根底。然后出例如1,让学生列出方程x+3=9,用课件演示x+3个方块=9个方块,提问:“如果要称出x有多种,改怎么办?〞,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。你能把称的过程用算式表示出来吗?大局部学生快速的写出了我想要的答案:x+3-3=9-3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?学生沉默,终于有两双小手举起来了,“为了得到一个x得多少〞,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的3减去,为了不耽误更多的时间,我没有继续深入探究。接下来教学例2,同样我利用天平原理帮助学生理解,在学生说出要把天平两端平均分成3分,得到每份是6的根底上,我用课件演示了分的过程,让学生把演示过程写出来,从而解出方程,教学反思《《解简易方程》教学反思》。在此根底上我引导学生总结天平保持平衡的道理,得到等式的根本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为0的数,方程两边仍然相等。当学生的解题方法得到了教师的肯定,让学生明白这种解题方法的优缺点。培养学生的创新能力和自主学习的能力让学生成为课堂的主体,教师充分发挥主导作用。

按理说,只要稍加类推,学生应该能掌握方程的解法。但接下来的练习却大大出人意料,除了少数成绩较好的学生能按照要求完成外,大局部几乎不会做,甚至动不了笔。问题出在哪里?经过认真反思总结如下:

一是从天平过渡到方程,类推的过程学生理解不透,天平两端同时减去3个方块,就相当于方程两边同时减去3,这个过程写下来时,要强调左右两边原来状态保持不变,要原样写下来,如果这样的话就不会造成有的学生不会格式;

二是对为什么要减去3讨论不够,虽然有学生答复上来了,我应该能觉察出学生理解有困难,课件和天平能让学生懂得方程两边要同时减去相同的数,至于为什么这里要减去3却还似懂非懂,如果当时举例说明也许很有效果,比方:x-3=6,我们该怎么办呢?学生通过比照讨论,就会发现我们要求出一个x是多少,就要根据方程的具体情况,假设比x多余的就要减去,缺乏x的就要补足,这样效果肯定好些。

三是备学生环节出现过失,这局部内容应该不难,但学生的现有根底是确定教学方法的根底,从教学效果看,我明显做的不够。

四是教学内容确定不恰当,本来我是想,上公开课要有一定的容量,就把例1和例2放在一起教学,既有加减,又有乘除的,只教学加法和乘法的,减法和除法的解法,让学生通过迁移类推的`方法的解决。由于我班学生是本期从各个地方转来的,根底参差不齐,而且整体水平较差,因此安排两个例题有难度。

《解简易方程》教学反思4

新课程的改革,使得小学的知识要表达与初中更加的接轨,五年级上册第四单元“解简易方程〞中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的东西。老教材中解方程的教学是利用加减乘除各局部之间的关系解决的,学生只要掌握了一个加数=和-另一个加数,减数=被减数-差,被减数=差+减数,一个因数=积÷另一个因数,除数=被除数÷商,被除数=商某除数这些关系式,不管是简单的还是复杂的方程都可以用这些关系式去解。而我们新教材却完全不是这种方法,它是利用天平的平衡原理得到等式的根本性质,即等式的两边同时加上或减去同一个数等式不变,和等式的两边同时乘或除以同一个数〔0除外〕,等式不变进行解方程的,新教材如果能把天平的规律教学得到位,这样就能把等式性质掌握好,等式性质掌握的好了解起方程来也有规律可循了。

于是,我在教学时充分地利用天平实物以及课件让学生深入地理解天平的平衡规律,从而顺利地揭示出了等式的性质。这样在解简易方程时学生很容易掌握方法。知道未知数加〔或减〕一个数时,只要在方程的两边同时减〔或加〕同一个数,未知数乘〔或除〕一个数时,只要在方程的两边同时除〔或乘〕同一个数即可。一般不会出现运算符号弄错的现象了。

为新课奠定了根底。在突破重难点时,我设计借助天平理解解方程的过程,当学生根据例1图意列出方程X+3=9时,我把皮球换成方格出现在大屏幕上时,问学生:“要得出X的值,在天平上应如何操作?〞由于问题提的不符合学生实际学习情况,学生一时不知如何答复。我连忙纠正问道:“天平左边有一个X和一个3,怎么让方程左边就剩下X呢?〞学生马上答复:“减去3。〞师:“天平右边也应该怎么办?〞生:“也减去3.〞师:“为什么?〞生:“天平的两边同时减去相同的数,天平仍然保持平衡。〞我因势利导地使学生学习解方程的方法及书写格式。课堂练习时间也不充裕,致使扩展思维题学生没时间去思考,没有到达预想的课堂效果。一节课虽然结束了,却给我留下了难忘的印象,经过认真反思总结如下:

一、教师要进入教材又要走出教材

教师要钻研教材,要吃透教材,准确、全面的弄清教材的精神实质,确定重点难点。但不仅这些,教师还要走出教材,纵观教材前后知识间的联系,横看课内知识与课外知识体系的位置,对本堂课所教知识在教材中的地位和应起的作用有个清晰的认识。教师进入教材是根底,走出教材是目的。惟有如此,才能帮助学生对当前知识进行整合与延伸。

二、教师要善于捕捉教学中的生成性内容

在实际的教学活动中,师生双方的活动往往会激发出来新的生成性内容,有的内容是学生遗忘的旧知,这时,我们应该帮助学生激活旧知;有的内容又是超越了本堂课的教学要求,教师要帮助学生拓展延伸。生成性的内容它源于教材,又超越于教材,有利于促进学生的成长和开展。

三、教学要前瞻后顾

作为一名数学老师,不管你任教哪一年级,你都应对数学教材有一个系统的认识。在教学中,除了让学生把本册教材的知识掌握扎实,还要帮助学生构建知识系统。把以前学过的知识与当前知识联系起来,对当前知识又要有拓展延伸的可能。

四、精心的安排练习题

解方程这局部教学内容与老教材相比有很大的差异,尤其是在方程的解法上,利用天平平衡的道理解方程,学生在理解和运用上都有一定的困难,而且本局部教学很是枯燥无味,于是我参加了闯关的情节,精心的安排练习题。当讲授完利用天平平衡的道理解方程后,马上进行了“填空练习〞,这四个练习题的安排也是经过精心考虑的:第一个方程中的数是整数,与例题相符合,较容易。第二个方程中的数变成小数,难度有所提高。第三和第四个方程,又有所变化,但解方程的方法是没有变的。从课堂的教学和课后的练习看,学生对解方程掌握的还不错。

但本节课缺乏之处在于最后留的时间过少,检验的格式没有完整的交给孩子们。可内心矛盾:检验的目的已经到达了,必须要重视其格式吗?

总体来说,喜欢让孩子们在快乐中学到知识,喜欢听孩子们说:“我还想上数学课。〞

《解简易方程》教学反思5

在本课教学中,我主要采用小组合作学习,讨论的方式,让学生探究新知识,效果较好。

出例如题2,小组合作学习,讨论:①你是怎样理解图意的?②你是如何列方程的?③你是根据什么解方程的?④怎样检验方程的解是否正确?然后班交流讨论,展示学生的练习。指名答复,说说自己的分析。你对他的分析有什么要问的吗?教师总结解题关键。

教学例3时,让学生观察、分析,这道题与前面的练习题比拟有什么区别?这道题可以怎样解?〔先小组交流后个人解答〕学生找出解题关键,培养一题多解的习惯与能力。

最后让学生做全课总结:今天学习了什么知识?解方程的关键是什么?

充分练习,进行思维训练,设计有趣的习题“帮小兔找家〞:4x-12=203x=15x+7=152x+3某2=16

18-2x=215÷3+4x=25

稳固知识,激发兴趣。

《解简易方程》教学反思6

教学实录:

出例如题:6x-6.8某2=20

师:请你观察一下这道方程和我们原来所学的方程有什么不一样?

生:它比原来多了一个6.8某2。

生:它比我们原来所学的方程多了一步运算。

师:你答复的非常好,这个方程比刚刚解答的方程要多一步计算,这就是今天要学习的解简易方程。(板书课题)

评析:

“一切真理都要让学生自己去获得,由他重新创造,而不是草率地传递给他。〞为此,我在教学中通过让学生对新旧知识进行比拟,让他们自己去获取新知。继而在教师的引导下尝试求6x-6.8某2=20的解。

我知道在前面已复习了ax土bx=c的方程,为推导求ax土b=c(b表示两数的积)的方程作铺垫;例题不但承接了上节课的内容,而且引出了本节课的新内容。这两道题,帮助学生找到新旧知识最近的连接点,为新知的学习做好铺路架桥的工作。

教学实录:

师:这道题是6x减去什么的差等于20,你觉得这道题开始要怎样解?

生:应先算6.8某2。

师:为什么要先算6.8某2?

生:因为前面是减法,后面是加法,我们应该按照四那么混合运算的顺序先乘后减,所以要先算6.8某2。

生:先算6.8某2就可以使方程变为6x-13.6=20,又回到了我们原来所学的方程。

生:因为在这条方程中6.8某2可以先算出来,所以要先算。

师:这两位同学很会动脑筋也都观察的非常仔细。解这个方程时,按运算顺序能先算的一步就要先算出来,然后再求方程的解,其中又把6x暂时看做一个数。

师:现在就请一位同学上黑板来演示一遍,看这样算行不行?其他同学也请自己在下面试试看。

同学们踊跃地举起了手。

师:你们觉得他做的对吗?做的完整吗?

生:我觉得他做的是对的,我也做到这么多。

同学们都在那里点头称是。

师:再仔细看看!

同学们感到很疑惑,一个个皱紧了眉头。沉默片刻,突然有一只小手举了起来。

生:他的答案是正确的,但是我觉得他做的不完整。

学生被这个说法吸引了起来,顿时三三两两地举起了手。

生:因为他还没有检验。

师:你们同意吗?

生齐答:同意。

师:对了,在解方程时我们一定要养成自觉检验的习惯,以此来检查方程的解对不对。

让学生在自己的本子上边回忆边检验,然后同桌互相检查检验的过程。

评析:

第一层:操作尝试,理解概念

为了让学生更好地掌握怎样去解答ax土b=c(b表示两数的积)的方程,我让学生自己去探究。

第二层:潜移默化,推导方法

有了上一层的前提教学,在这一层,我就可以放手让学生尝试解答例题了。并提出问题你觉得这道题开始时要怎样去解?为什么?该怎样检验方程的解?

其实这些“想〞的过程正是教师要教的过程,也是学生解题的的思考过程。这些自学提纲充当了学生自学的“领路人〞,学生通过提示,再思考该填上的内容,新知识便顺利地掌握了。

《解简易方程》教学反思7

学生经历由天平上的具体操作抽象为代数问题的过程,能用等式的性质〔天平平衡的道理〕列出方程,对于解比拟简单的方程,学生并不陌生。

比方:x+4=7学生能够很快说出x=3,但是就方程的书写标准来说,有必要一开始就强化训练,老师标准的板书,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。对于稍复杂的方程要放手让学生去试一试,这样就可以使探究式课堂教学进入一个理想的境界。

不难看出,学生经历了把运算符号“+〞看错成了“-〞,又自行改正的过程,在这一过程中学生体验到了紧张、焦急、期待,成功的感觉,这时的数学学习已进入了学生的内心,并成为学生生命成长的过程,真正落实了《数学课程标准》中“在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心〞的目标,在这个思维过程中,学生获得了情感体验和发现错误又自己解决问题的时机。老师以人为本,充分尊重学生,也表达在耐心的等待,热切的期待的教学行为上,老师的教学行为充满了人文关心的气息,微笑的脸庞、期待的眼神、鼓励的话语,无时无刻不使学生感到这不仅是数学学习的过程,更是一种生命交往的过程,学生有了很平安的心理空间,不然,他怎么会对老师说“老师,我太紧张了〞,这是学生对老师的信任和自己不安的复杂情绪的表现。反思我们的教学行为,如果在课堂中多一些耐心和期待,就会有更多的爱洒向更多的学生,学生的人生历程中就会多一份信心,多一份勇气,多一份灵气。

《解简易方程》教学反思8

《解简易方程》教学反思数学课程标准〔实验稿〕》改变了小学阶段解方程方法的教学要求,采用了等式的性质来教学解方程。现将解方程的新旧方法举例如下:

老方法:

x+4=20

x=20-4

依据运算之间的关系:一个加数等于和减另一个加数。

新方法:

x+4=20

x+4-4=20-4

依据等式的根本性质1:等式两边加上或减去相等的数,等式不变。

改革的原因〔摘自教学参考书〕:

新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的根本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的根本性质,并以此为根底导出解方程的方法。这就较为彻底地防止了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。

从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。

那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的改革有没有什么问题?在我的教学过程中真的出现了问题。

1.无法解如a-x=b和ax=b此类的方程

新教材认为,利用等式根本性质解方程后,解象x+a=b与x-a=b一类的方程,都可以归结为等式两边同时减去〔加上〕a;解如ax=b与xa=b一类的方程,都可以归结为等式两边同时除以〔乘上〕a。这就是所谓相比原来方法,思路更为统一的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小学生还没有学习正负数的四那么运算,利用等式的根本性质解a-x=b,方程变形的过程及算理解释比拟麻烦;而ax=b的方程,因为其本质是分式方程,依据等式的根本性质解需要先去分母,也不适合在小学阶段学习。

我认为为了要运用等式根本性质,却回避掉了两类方程,这似乎不妥。更重要的是,回避这两类方程,新教材认为并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或ax=b的方程时,总是要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我认为,这样的处理方法,有时更会无法防止地直接和方程思想发生矛盾。

如3千克梨比5千克桃子贵0.5元。梨每千克2.5元,桃子每千克多少元?

合理的做法应是设桃子每千克X元,从顺向思考,列出方程为2.53-5X=0.5。然而,按新教材的编排,因为学生现在不会解这样的方程,所以要根据数量关系,转列成5X+0.5=2.53之类的方程。又如:课本第62页中的爸爸比小明大28岁,小明Х岁,爸爸40岁。很多学生根据爸爸比小明大28岁列出40-Х=28,可是无法求解,所以又转成Х+28=40。

很明显,第二个方程是和方程思想的根本理念相违背的。我们知道,方程最大的意义,就是让未知数参与进式子,使考虑问题更加直接自然。为实现这个目标,很重要的一点,就是列式时应尽量顺向思考,以降低思考的难度。这是表达方程方法的优越性必然要求。事实上,如果学生能够列成5X+0.5=2.53Х+28=40那就说明他已经非常熟悉其中的数量关系了,此时,用算术方法即可,哪还有列方程来解的必要呢?我们又怎谈引导学生认识方程的优越性呢?

我们不难看出,根据现实情境列方程解决问题,X当作减数、当作除数,应当是很常见、很必要的现象。要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否那么,我们的教学就会显得片面和狭隘。

2.解方程的书写过程太繁琐

教材要求,在学生用等式根本性质解方程时,方程的变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的繁琐。

因为用等式根本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了

从这两个方面来看,小学里学习等式的根本性质,并运用它来解方程,在实际操作中,也存在许多的现实问题。那么,如果说用算术思路解方程对初中学习有负迁移,需要改革,现在改成用等式根本性质解方程,同样出现问题,那我们又如何是好呢?

《解简易方程》教学反思9

新课程的改革,使得小学的知识要表达与初中更加的接轨,五年级上册第四单元“解简易方程〞中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的东西,但是也让我感到了许多困惑

1、从教材的编排上,整体难度下降,有意避开了,形如:45-X=23等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现X前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出X在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可防止的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受--解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。

2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充X前面是除号或减号的方程的解法。要教他们列方程时怎么防止X前面是除号或减号的方程的出现等等。

《解简易方程》教学反思10

本节课的教学重点和难点是:理解“方程的解〞、“解方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论