三角形的稳定性公开课大赛(省)优【一等奖教案】_第1页
三角形的稳定性公开课大赛(省)优【一等奖教案】_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

11.1.3三角形的稳定性1•通过观察、感悟三角形具有稳定性,四边形不具有稳定性.1•通过观察、感悟三角形具有稳定性,四边形不具有稳定性.三角形的稳定性在生活、生产中的实际应用.(难点)(重点)一、情境导入一天数学小博士听到三角形和四边形在一起争论“有稳定性好还是没有稳定性好?”先听它们是怎么说的.三角形:“具有稳定性的我最好,因为我牢固,不易变形,所以我最受欢迎,不像你四边形,你没有坚定的立场!”四边形:“灵活性强,可伸可缩,我的这些优点比起你三角形那呆板、简单、一成不变的形式不知有多优越!”三角形:“我广泛应用于人类的生产生活中,如三角尺、钢架桥、起重机、屋顶的钢架,我的用途大!”四边形:“我的用途广,像活动衣架、缩放尺、活动铁门等,人类的生活因为我而丰富多彩!”假如你是数学小博士,你会如何来调解它们的争论?二、合作探究探究点:三角形的稳定性【类型一】三角形稳定性的应用D要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,…,那么要使一个n边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n边形的一个顶点可以作(n—3)条对角线,把多边形分成(n—2)个三角形,所以,要使一个n边形木架不变形,至少需要(n—3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.【类型二】四边形的不稳定性[1112大家经常看到有些学校、它常常做成四边形的形状,你知道这是为什么吗?小区的大门都使用了伸缩门,

[1112大家经常看到有些学校、它常常做成四边形的形状,你知道这是为什么吗?小区的大门都使用了伸缩门,解析:从四边形特性的角度考虑.解:伸缩门做成四边形的形状,是利用四边形易变形这一特性.方法总结:四边形具有不稳定性,容易变形,我们生活中的很多实例都利用了这一性质,注意在日常生活中积累这方面的经验.三、板书设计三角形的稳定性三角形具有稳定性2•四边形没有稳定性三角形的稳定性的应用四边形的不稳定性的应用\\在教学三角形的稳定性时,利用多媒体引导学生探寻三角形稳定性的数学含义,进而用三角形的稳定性解释“为什么不易变形”,再回归生活,运用三角形的稳定性解释如何解决生活中的问题•学生清楚地认识到“不易变形”是三角形的稳定性的一个表现,一种应用,而不是将三角形的稳定性与“不易变形”划等号.这样的教学既使得学生对稳定性有了正确清楚的认识,也为以后进一步学习三角形的稳定性和“全等三角形”的判定方法奠定了认知的基础.第2课时含30°角的直角三角形的性质(难点)1.理解并掌握含30°角的直角三角形的性质定理.(重点)2•能灵活运用含(难点)一、情境导入问题:我们学习过直角三角形,直角三角形的角之间都有什么数量关系?用你的30°角的直角三角尺,把斜边和30°角所对的直角边量一量,你有什么发现?今天,我们先来看一个特殊的直角三角形,看它的边角具有什么性质.二、合作探究探究点:含30°角的直角三角形的性质【类型一】利用含30°角的直角三角形的性质求线段长

ADliD如图,在Rt△ABC中,/ACB=90°,/ADliD如图,在Rt△ABC中,/ACB=90°,/B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是()A.3cmB.6cmC.9cmD.12cm解析:在Rt△ABC中,vCD是斜边AB上的高,「./ADG=90°,—ZACD=/B=30°.在Rt△ACD中,AC=2AD=6cm在Rt△ABC中,AB=2AC=12cm./•AB的长度是12cm.故选D.方法总结:运用含30。角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.【类型二】与角平分线或垂直平分线性质的综合运用ZAOP=ZBOP=15°[ME等于(A.3B.2C.1.5D.1解析:如图,过点P作PELOB于EvPC//OA•••/AO=ZCPO「・ZPCE=ZBOP-11ZCPO=ZBO—ZAO=ZAO=30°.又vPC=3,•PE=-PC=?x3=1.5.vZAOP=ZBOP如图,)PD丄OAFD若PC=3」PDPDLOA•-PD=PE=1.5.故选C.方法总结:含30°角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.【类型三】利用含30°角的直角三角形的性质探究线段之间的倍、分关系D如图,在△ABC中,ZC=90°,AD是ZBAC勺平分线,过点D作DELABDE恰好是ZADB的平分线.CD与DB有怎样的数量关系?请说明理由.解析:由条件先证△AED^ABED得出ZBAD=ZCAD=ZB,求得ZB=30°,即可得到1CD=2DB1解:CD=^DB理由如下:VDEIAB•ZAED=ZBED=90°.vDE是ZADB的平分线,•ZADE=ZBDE又vDE=DE•△AED^ABEDASA),•AD=BDZDAE=ZB.vZBAD=1ZCAD=-ZBAC•ZBAD=ZCA=ZBvZBADbZCA—ZB=90°,•/B=ZBAD=ZCAD111=30°.在Rt△ACD中,•••/CAD=30°,「.CD=qA*2BD即CD=-D^方法总结:含30°角的直角三角形的性质是表示线段倍分关系的一个重要的依据,如果问题中出现探究线段倍分关系的结论时,要联想此性质.【类型四】利用含30°角的直角三角形解决实际问题H4美化环境,已知AC=50mAB-40m/BAC=150。,这种草皮每平方米的售价是a元,求购买这种草皮至少需要多少元?DAr解析:作BD丄CA交CA的延长线于点D.在Rt△ABD中,利用30°角所对的直角边是斜边的一半求BD即厶ABC的高•运用三角形面积公式计算面积求解.解:如图所示,作BDLCA于D点.•••/BAC=150°,二/DAB=30°.vAB=40m二BD11=qAB^20m二SLabc=qx50x20=500(m2).已知这种草皮每平方米a元,所以一共需要500a元.方法总结:解此题的关键在于作出CA边上的高,根据相关的性质推出高BD的长度,正确的计算出△ABC勺面积.三、板书设计含30°角的直角三角形的性质性质:在直角三角形中,如果一个锐角是30°,那么它所对的直角边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论