版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Newly
progress
of
the
Zn/Nisingle
flow
batteryNewlyprogressoftheZn/Nisin1OutlineIntroductionBackgroundNewly
progressExperimentalResults
of
our
teamResults
of
othersConclusionAcknowledgmentOutlineIntroductionNewlypro2
Introduction
It’s
urgent
in
demands
of
energy
storage
for
use
ofrenewable
energies.
frequency
controlload
regulationUPS,
andbackup
power
sources
stabilizing
electricity
network
and
penetratingrenewable
energy IntroductionloadregulationU3
IntroductionRedox
flow
battery
Theredox
couples
must
be
carried
by
the
pumped
solutions;
well-suited
for
transmission
and
distribution
deferral
applications;
The
advantages:
moderate
cost,
modularity,
transportability
and
flexible
operation.
+
–Scheme
of
typical
redoxflow
cell:
reversibleelectro-synthesis
plantPumpPump IntroductionTheredoxcouple42Br
2e
arge2
2e
argeZn
3V
2e
arg
eV
VO
2H
e
arg
e
IntroductionRedox
flow
battery
ThoseRFB
systems
demonstrated
at
a
large
scale
require
expensive
materials;
Aiming
to
reduce
costs
and
simplify
the
cell
design,
some
new
systems
have
been
reported.
But
these
systems
still
have
shortcomings;
A
zinc
nickel
single
flow
battery
is
proposed
by
our
team,
in
which
almost
no
expensive
materials
are
needed.zinc/bromine
flow
batteryBr2Zncharge
dischchargedischch
arg
edischall
vanadium
flow
battery2
dischch
arg
eVO2
H2O2Br2earge5
BackgroundZn/Ni
single
flow
battery2Ni(OH)2
2OH2NiOOH2H2O2e
discharge
chargePos.Zn4OHZn(OH)24
2e
discharge
chargeNeg.+
_Single
electrolyte
flow
path,
no
membrane;Modular,
Scalable;
Non-toxic;
stable;
Excellent
Cycle
lifeNiOOH
Zn泵Zn(OH)42-
aq.Background2Ni(OH6tage(V)
Voltltage
(V
VolV)Capacity
(mAh/cm
)
BackgroundCoulombic
efficiency
of
above
95%
and
energyefficiency
of
above
85%
were
obtained
withlaboratory
cell.Fully
charged21.81.624h2.01.51.0positive
(vs.
Hg/HgO)5
C.E.
70.6%1.41.21.048h
0.5
0.0-0.5-1.0Negative
(vs.
Hg/HgO)93.0%95.1%96.0%96.8%0510152025020406080
100
120-1.5
2Self-discharge
property
(25mA/cm2)
timeCharge/discharge
curves
(25mA/cm2)tage(V)Voltltage(VVolV)Capa7i
/
A
LogIo/Acm
:
1.33101E-3
Background
Zn/Ni
single
flow
batteryZinc
morphology,
mossy
and
crystalline;Tafel
ananalysis,
i0~0.01A/cm2;
0.1
0.01
-1
-1
:0.55
-2
-2-1.40
-1.38
-1.36
-1.34
-1.32
Potential/Vvs.Hg/HgOi/ALogIo/Acm:1.33101E-8Current
/
AI
(mA)ge
(V)
Voltagtion(%)
apacity
retent
CaCoulomb
bic
Efficiency
yCPb/
M:4:
52:
5
5:6:
53:
10Background
23Additive0.050.040.030.020.01-4
45
2+1
1:
0
6Substrate
0.000
0.002
0.004
CdPb
Cu-1.6-1.4
-1.2
-1.0
-0.8-0.6-0.03
0.00-0.01-0.021-1.6-1.2-0.8-0.40.0060.008E
(V
vs.
Hg/HgO)Scale
upPotential
/
Vvs.
HgO/Hg7.35Ah(100%DOD)77cm21.62.01.86A3A
1.5A100
806010080Efficiency:
Coulomb6A
91.6%3A
95.1%1.5
96.9%Energy75.4%79.7%87.6%604020402080%DOD02000400060001.41.21.0Capacity
(mAh)0cycle
02500
5000
7500
10000
12500Current/AI(mA)ge(V)Voltag9ExperimentalNewly
progressAllthe
chemicals
of
analytical
grade
purity
were
used.
The
solvent
of
the
solutions
is
distilled
water.
The
pumps
were
made
by
Xin
Xi
Shan
pumps
Co.,
ltd.
Laboratory
cell
and
scaled-up
cell
were
used
to
demonstrate
the
performance
of
the
Zn/Ni
single
flow
battery.Laboratory
cell,
electrode
area:
7.0
cm×7.0
cm;ExperimentalNewlyprogressAll10ExperimentalNewly
progressElectrochemical
performance
of
singleelctrode
was
carried
out
using
aSolartron
1280Z
workstation
with
cyclicvoltammetry
in
a
three-electrodeWEconfiguration
assembly
consisting
ofsintered
nickel
oxide
as
the
counterelectrode,
depsiting
zinc
as
the
workingRECEelectrode
and
Hg/HgO
as
the
referenceelectrode.
working
electrode:
2.0
cm×2.0
cm;
7.0
cm×7.0
cmExperimentalNewlyprogressEle11ExperimentalNewly
progressThe
charge
and
discharge
characteristics
of
thecell
were
studied
by
applying
a
dc
constant
currentusing
a
Neware
BTS
3000
battery
test
system(5V2000mA
and
5V200A).Laboratory
cell1.6V200AhExperimentalNewlyprogressThe12ExperimentalNewly
progressSolutions
for
CVs,
different
ZnO
in
different
KOH;
Solutions
for
the
cell,
1.0
mol/L
ZnO
+
10.0
mol/L
KOH
+
0.5
mol/L
LiOH;The
cell
was
charged
up
to
20
mAh/cm2
at
thecurrent
density
of
5mA/cm2,
10mA/cm2;ExperimentalNewlyprogressSol132)
ensity
(A/cm
Current
dem)
e
Charge(C/cm
AccumulativeCharge(C/cm
)
AccumulativeC220Results
of
our
teamNewly
progressCu
foilIron
meshSubstrateNi
foilThe
mode
of
masstransportation
ofIron
mesh
ischanged
due
tothe
structure.Iron
mesh
1
mV/s0200060008000
0-40-80-120
0
-4
-8
400010
mV/sNi
foil
1mV/s060008000
0-100-200
0-10-202000
4000
10
mV/s-0.10-0.15
0.00
Cufoil-0.05FemeshcoatedNi
200
10050600300
200800400
2501000
500
300-12
0
0
-1
-2
-3
-4
-5
0
0
-1
-2
-3
0
40030
mV/s
20050
mV/s100
150
Time(s)
0
0-2-4-6
0-2-4
0
200
400
600
800
-0.20
Nifoil
30
mV/s
-0.25
100
200
300
400
-1.6
-1.2
-0.8
-0.4
50
mV/s50
100
150
200
250
Potential(Vvs.Hg/HgO)
Time(s)
程杰,文越华,
徐艳,物理化学学报,
已投稿Chemical
journal
of
Chinese
universities,
2011,
32:1-42)ensity(A/cmCurrentdem)e14I
(cps)cps)
I
(c-30mA/cm
40min2-40mA/cm
30min1-
60mA/cm
20min-
80mA/cm
15minResults
of
our
teamNewly
progressElectrodepositionof
preferentially
oriented
zinc10122104201112103
11010210000225mA/cm220mA/cm230mA/cm240mA/cm260mA/cm280mA/cm2
The
effect
of
current
on
morphologyand
crystal
Structure
of
zinc3040506070809010014h3h40min30min30min30min00222.7522.0520.03619.326.621.46221122(deg)
1031001011021038.7341.396.056.038.9536.287.239.2211.8136.376.337.619.7741.646.936.838.0431.636.899.861.18.1719.5436.510111010211100044.351.644.821.115.31.795.831.414.481.425.3801124.385.864.284.885.2424.39304050607080901001101000022
(deg)10422002011.143.503.51.372.2203.340.772.850010400.941.7101.43.42I(cps)cps)I(c-30mA/cm40min15g/HgO
tial
/
V
vs.
Hg
Potentacity
/mA
CapAh
Results
of
our
teamSintered
Nickel
electrode0.80.6Newly
progressAfter
100cyclesAfter
300cyclesAfter
500cyclesCyclingDischarge
capacity
/mAh
(100&DOD,
8mol/LKOH)0.4number
0.3M
ZnO
5
100
100
1000.4M
ZnO
100
99.310.5M
ZnO
0.6M
ZnO
0.7M
ZnO
100
100
100
98.19
97.75
98.0220099.2398.5298.9198.7296.830510
15
20250.20.00.6M
ZnO30010010099.4499.6799.3440099.2499.1799.2299.1799.32Capacity
/
mAh
cm-2100
500
95.67
96.07
98.45
96.40
99.88The
presence
of
zinc
in
KOHelectrolytes
improves
the
cyclingstability
of
sintered
nickel
electrodes.8060no
zinc
80%
DOD
85%
DOD
90%
DOD
95%
DOD
100%
DOD
0
100
200
300
400
500
600
cycleJie
Cheng,
Yuehua
Wen,
Gaoping
Cao
et.
al.
J.
Power
Sources,
196:1589,
2011g/HgOtial/Vvs.HgPotentac16/%
Efficiency
EnergyE/fficiency
/%
Energy
Efcy
/%
ergy
Efficienc
Eneciency
/%
Energy
Efficciency
/%
Energy
EfficEfficiency
/%
EnergyE%i
=15mAcm20mAh/cm25mAh/cm30mAh/cm20mAh/cm25mAh/cm30mAh/cmi
=
25mA
cm20mAh/cm25mAh/cm30mAh/cm20mAh/cm25mAh/cm30mAh/cmi
=
25mA
cmResults
of
our
teamNewly
progress5.75
L/
min3.45
L/
min5.25
L/
minStability
of
cycling
Effect
of
current
and
flow
speed
on
the
performance
of
Zn-Ni
single
flow
batteries
and
zinc
deposition
morphology
were
investigated.709080-2709080i
=
15
mA
cm-2709080-2020605040302010
0222020605040302010
02220206050
i
=
15mA
cm40302010
020mAh/cm25mAh/cm30mAh/cm2228070908070905
10
15
CycleNumber9080
5
10
15Cycle
Number
5
10
15Cycle
Number605040302010
0605040302010
0222-2
-2
20mAh/cm2
25mAh/cm2
30mAh/cm20
5
10
15
200i
=
25mA
cm-2
5
1015
200152070605040302010
0222
5
10Cycle
NumberCycle
Number
Cycle
Number
Chemical
journal
of
Chinese
universities,
2011,
32:1-4/%EfficiencyEnergyE/fficienc17Temp(C)ChargeDischargeColombicCapacity(Ah)Capacity(Ah)Efficiency(%)EnergyEfficiency(%)403.953.7996.084.1253.953.8296.684.6103.953.8397.081.503.703703.643649898.338383.77-103.063.0599.482.4-201.991.9799.279.6Voltage(VV)Voltage(VV)Voltage(VV)40
C0C-20
CResults
of
our
teamNewly
progressEffect
of
temperature
Energy
efficiency
is
almost
stable
as
temperature
decreases.
(Results
of
3.6Ah
battery.)**(Rate:
0.55C,
Charge:
Capacity
3.95Ah/2.1V)2.02.2o2.02.2o2.02.2o1.81.61.81.6
E.E.2.1V
84.12%1.81.6
E.E.2.1V
83.72%01231.41.2Capacity(Ah)
E.E.2.10V
79.60%2.15V
80.05%012341.41.2Capacity(Ah)012341.41.2Capacity(Ah)Temp(C)ChargeDischargeColombi18tage(V)
Voltage(V)
Volta-20
C20-30C-20
CVHigh-20
C
82.4%-30
C
79.4%Results
of
our
teamNewly
progress2.0Effect
of
temperature
Results
of
200Ah
battery
show
that
the
energy
efficiency
is
83.3%
at
current
of
50A
when
the
temperature
is
about
-20C.
2.2o1.8oo1.82.02.1V2.0VooE.E.0501001501.61.41.2Capacity(Ah)0501001501.61.41.2Capacity(Ah)
E.E.2.0V
83.3%2.1V
82.4%Charge/discharge
at
50A(200Ah
battery)tage(V)Voltage(V)Volta-20C219Newly
progress
Results
of
our
teamScale
up
the
cell1.6V200AhNewlyprogress Resultsofour20oltage
(V
VV)V(V)
Voltage(Cefficiency=95.2%Cefficiency=97
5%Newly
progress
Results
of
our
team200Ah
Zn/Ni
single
flow
battery
We
settled
on
the
1.6V200Ah
cell
design.
Electrolyte
velocity
between
electrode,
~0.5
cm/s.2.01.81.01.61.41.2Current=50.0A
95
2%Eefficiency=80.8%2.01.81.6020050
100
150
Capacity
(Ah)1.41.21.0Current=100.0A
=97.5%Eefficiency=75.9%050100150200Capacity
(Ah)oltage(VVV)V(V)Voltage(Ceff21Current(A)ChargeCapacity(Ah)DischargeCapacity(Ah)ComlobicEfficiency(%)EnergyEfficiency(%)50216.8211.097.3284.46100216216.77210210.339797.05057878.1414150203.8197.696.9672.33200205.9199.096.6567.98Newly
progress
Results
of
our
team200Ah
Zn/Ni
single
flow
battery
Performance
of
the
batteryCurrent(A)ChargeDischargeComlo22age
(V)
VoltaResults
of
our
teamNewly
progress200Ah
Zn/Ni
single
flow
battery
50kWh
energy
storage
system
with
168
units
of
200Ah
Zn/Ni
single
flow
redox
battery
Charge/
discharge
Limitsconditions18kW/18k
1.2V<Uc<2.1V
W
200<U<360V200A/200
1.2V<Uc<2.1V
A
200<U<370V
Charge
Discharge
energy
energy68.30
kWh
55.21
kWh40.80
kWh
30.70
kWh
Energyefficiency
80.8%
75.2%200360340320300280260240220Constant
Power
(18kW)
Capacity(kWh)0204060age(V)VoltaResultsofourte23Newly
progress
Results
of
our
team300Ah
Zn/Ni
single
flow
batteryNewlyprogress Resultsofour24Results
of
our
teamNewly
progress300Ah
Zn/Ni
single
flow
battery
Production
line
with
a
total
capacity
of
up
to
1
megawatthours
per
year
was
designed
and
builded.ResultsofourteamNewlyprogr25Results
of
othersNewly
progressElectrodeposition
of
preferentially
oriented
zincMossy
50
C/cm2Compactdendritic
Plot
of
areal
fraction
of
compact
zinc
versus
the
current
density
ratioJournal
of
Power
Sources
256
(2014)
145-152ResultsofothersNewlyprogres26Results
of
othersNewly
progressGas
evolution
Oxygen
evolution
occurs
during
later
period
of
the
charging
process.
Hydrogen
is
evolved
throughout
the
cycling.
The
zinc
electrode
typically
is
more
Coulombically
efficient
than
the
nickel
oxide
electrode.
H2Journal
of
Power
Sources
196
(2011)
6583-6587ResultsofothersNewlyprogres27Results
of
othersNewly
progressImprove
power
density
by
cell
configuration
Anovel
cell
structure
is
designed
to
reduce
the
polarization
of
the
positive
electrode.
The
energy
efficiency
is
improved
10.3%
reaching
to
75.2%
at
80
mA/cm2.Journal
of
Power
Sources
241
(2013)
196-202FlowAdditional
flowResultsofothersNewlyprogres28Results
of
othersNewly
progressEffect
of
temperature
The
temperature
sensitivity
of
CE
and
EE
are
0.65%/C
and
0.98%/C.
The
positive
polarization
is
a
major
obstacle
to
enhancethe
VE.80
mA/cm2Journal
of
Power
Sources
249
(2014)
435-439ResultsofothersNewlyprogres29
Results
of
others/
Newly
progress36kWh示范 Resultsofothers Newlyprogr30Newly
progress
Results
of
others555Ah
Zn/Ni
single
flow
batteryJournal
of
Power
Sources
264
(2014)
49-58Newlyprogress Resultsofothe31Newly
progress
Results
of
others555Ah
Zn/Ni
single
flow
battery95th
cycleJournal
of
Power
Sources
264
(2014)
49-58Newlyprogress Resultsofothe32ConclusionIron
mesh
is
suitable
for
the
deposition
of
zinc.There
exists
electrodeposition
of
preferentially
oriented
zinc,
mainly
influenced
by
current,
zinc
concentration
and
flow
flux.
The
presence
of
zinc
in
KOH
electrolytes
inhibits
changes
in
the
cycling
process
as
compared
to
KOH
electrolytes
with
no
zinc.
The
zinc
deposition
surface
capacity
is
the
most
important
factor
for
the
battery.
The
electrolyte
flow
speed
and
current
density
must
be
settled
to
fit
the
crystal
structure
of
the
zinc.ConclusionIronmeshissuitab33ConclusionOxygen
evolution
occurs
during
later
period
of
thecharging
process,
and
Hydrogen
is
evolved
throughoutthe
cycling.Power
density
of
the
battery
can
be
improved
by
usinga
special
cell
configuration.The
battery
can
be
used
at
low
temperature.
When
thecurrent
is
higher
(80
mA/cm2),
the
energy
effeciencydecreases
more
quickly
as
the
temperature
gongingdown.Scale-up
battery
can
give
similar
performance
as
labcell,
and
the
demonstration
system
with
capacity
ofabove
50kWh
goes
well.ConclusionOxygenevolutionoc34AcknowledgmentThis
work
was
supported
by
the
National
HighTechnology
Research
and
Development
Program
(863Program,
2012AA052003)
of
China.AcknowledgmentThisworkwass35Thank
you!Thankyou!36Newly
progress
of
the
Zn/Nisingle
flow
batteryNewlyprogressoftheZn/Nisin37OutlineIntroductionBackgroundNewly
progressExperimentalResults
of
our
teamResults
of
othersConclusionAcknowledgmentOutlineIntroductionNewlypro38
Introduction
It’s
urgent
in
demands
of
energy
storage
for
use
ofrenewable
energies.
frequency
controlload
regulationUPS,
andbackup
power
sources
stabilizing
electricity
network
and
penetratingrenewable
energy IntroductionloadregulationU39
IntroductionRedox
flow
battery
Theredox
couples
must
be
carried
by
the
pumped
solutions;
well-suited
for
transmission
and
distribution
deferral
applications;
The
advantages:
moderate
cost,
modularity,
transportability
and
flexible
operation.
+
–Scheme
of
typical
redoxflow
cell:
reversibleelectro-synthesis
plantPumpPump IntroductionTheredoxcouple402Br
2e
arge2
2e
argeZn
3V
2e
arg
eV
VO
2H
e
arg
e
IntroductionRedox
flow
battery
ThoseRFB
systems
demonstrated
at
a
large
scale
require
expensive
materials;
Aiming
to
reduce
costs
and
simplify
the
cell
design,
some
new
systems
have
been
reported.
But
these
systems
still
have
shortcomings;
A
zinc
nickel
single
flow
battery
is
proposed
by
our
team,
in
which
almost
no
expensive
materials
are
needed.zinc/bromine
flow
batteryBr2Zncharge
dischchargedischch
arg
edischall
vanadium
flow
battery2
dischch
arg
eVO2
H2O2Br2earge41
BackgroundZn/Ni
single
flow
battery2Ni(OH)2
2OH2NiOOH2H2O2e
discharge
chargePos.Zn4OHZn(OH)24
2e
discharge
chargeNeg.+
_Single
electrolyte
flow
path,
no
membrane;Modular,
Scalable;
Non-toxic;
stable;
Excellent
Cycle
lifeNiOOH
Zn泵Zn(OH)42-
aq.Background2Ni(OH42tage(V)
Voltltage
(V
VolV)Capacity
(mAh/cm
)
BackgroundCoulombic
efficiency
of
above
95%
and
energyefficiency
of
above
85%
were
obtained
withlaboratory
cell.Fully
charged21.81.624h2.01.51.0positive
(vs.
Hg/HgO)5
C.E.
70.6%1.41.21.048h
0.5
0.0-0.5-1.0Negative
(vs.
Hg/HgO)93.0%95.1%96.0%96.8%0510152025020406080
100
120-1.5
2Self-discharge
property
(25mA/cm2)
timeCharge/discharge
curves
(25mA/cm2)tage(V)Voltltage(VVolV)Capa43i
/
A
LogIo/Acm
:
1.33101E-3
Background
Zn/Ni
single
flow
batteryZinc
morphology,
mossy
and
crystalline;Tafel
ananalysis,
i0~0.01A/cm2;
0.1
0.01
-1
-1
:0.55
-2
-2-1.40
-1.38
-1.36
-1.34
-1.32
Potential/Vvs.Hg/HgOi/ALogIo/Acm:1.33101E-44Current
/
AI
(mA)ge
(V)
Voltagtion(%)
apacity
retent
CaCoulomb
bic
Efficiency
yCPb/
M:4:
52:
5
5:6:
53:
10Background
23Additive0.050.040.030.020.01-4
45
2+1
1:
0
6Substrate
0.000
0.002
0.004
CdPb
Cu-1.6-1.4
-1.2
-1.0
-0.8-0.6-0.03
0.00-0.01-0.021-1.6-1.2-0.8-0.40.0060.008E
(V
vs.
Hg/HgO)Scale
upPotential
/
Vvs.
HgO/Hg7.35Ah(100%DOD)77cm21.62.01.86A3A
1.5A100
806010080Efficiency:
Coulomb6A
91.6%3A
95.1%1.5
96.9%Energy75.4%79.7%87.6%604020402080%DOD02000400060001.41.21.0Capacity
(mAh)0cycle
02500
5000
7500
10000
12500Current/AI(mA)ge(V)Voltag45ExperimentalNewly
progressAllthe
chemicals
of
analytical
grade
purity
were
used.
The
solvent
of
the
solutions
is
distilled
water.
The
pumps
were
made
by
Xin
Xi
Shan
pumps
Co.,
ltd.
Laboratory
cell
and
scaled-up
cell
were
used
to
demonstrate
the
performance
of
the
Zn/Ni
single
flow
battery.Laboratory
cell,
electrode
area:
7.0
cm×7.0
cm;ExperimentalNewlyprogressAll46ExperimentalNewly
progressElectrochemical
performance
of
singleelctrode
was
carried
out
using
aSolartron
1280Z
workstation
with
cyclicvoltammetry
in
a
three-electrodeWEconfiguration
assembly
consisting
ofsintered
nickel
oxide
as
the
counterelectrode,
depsiting
zinc
as
the
workingRECEelectrode
and
Hg/HgO
as
the
referenceelectrode.
working
electrode:
2.0
cm×2.0
cm;
7.0
cm×7.0
cmExperimentalNewlyprogressEle47ExperimentalNewly
progressThe
charge
and
discharge
characteristics
of
thecell
were
studied
by
applying
a
dc
constant
currentusing
a
Neware
BTS
3000
battery
test
system(5V2000mA
and
5V200A).Laboratory
cell1.6V200AhExperimentalNewlyprogressThe48ExperimentalNewly
progressSolutions
for
CVs,
different
ZnO
in
different
KOH;
Solutions
for
the
cell,
1.0
mol/L
ZnO
+
10.0
mol/L
KOH
+
0.5
mol/L
LiOH;The
cell
was
charged
up
to
20
mAh/cm2
at
thecurrent
density
of
5mA/cm2,
10mA/cm2;ExperimentalNewlyprogressSol492)
ensity
(A/cm
Current
dem)
e
Charge(C/cm
AccumulativeCharge(C/cm
)
AccumulativeC220Results
of
our
teamNewly
progressCu
foilIron
meshSubstrateNi
foilThe
mode
of
masstransportation
ofIron
mesh
ischanged
due
tothe
structure.Iron
mesh
1
mV/s0200060008000
0-40-80-120
0
-4
-8
400010
mV/sNi
foil
1mV/s060008000
0-100-200
0-10-202000
4000
10
mV/s-0.10-0.15
0.00
Cufoil-0.05FemeshcoatedNi
200
10050600300
200800400
2501000
500
300-12
0
0
-1
-2
-3
-4
-5
0
0
-1
-2
-3
0
40030
mV/s
20050
mV/s100
150
Time(s)
0
0-2-4-6
0-2-4
0
200
400
600
800
-0.20
Nifoil
30
mV/s
-0.25
100
200
300
400
-1.6
-1.2
-0.8
-0.4
50
mV/s50
100
150
200
250
Potential(Vvs.Hg/HgO)
Time(s)
程杰,文越华,
徐艳,物理化学学报,
已投稿Chemical
journal
of
Chinese
universities,
2011,
32:1-42)ensity(A/cmCurrentdem)e50I
(cps)cps)
I
(c-30mA/cm
40min2-40mA/cm
30min1-
60mA/cm
20min-
80mA/cm
15minResults
of
our
teamNewly
progressElectrodepositionof
preferentially
oriented
zinc10122104201112103
11010210000225mA/cm220mA/cm230mA/cm240mA/cm260mA/cm280mA/cm2
The
effect
of
current
on
morphologyand
crystal
Structure
of
zinc3040506070809010014h3h40min30min30min30min00222.7522.0520.03619.326.621.46221122(deg)
1031001011021038.7341.396.056.038.9536.287.239.2211.8136.376.337.619.7741.646.936.838.0431.636.899.861.18.1719.5436.510111010211100044.351.644.821.115.31.795.831.414.481.425.3801124.385.864.284.885.2424.39304050607080901001101000022
(deg)10422002011.143.503.51.372.2203.340.772.850010400.941.7101.43.42I(cps)cps)I(c-30mA/cm40min51g/HgO
tial
/
V
vs.
Hg
Potentacity
/mA
CapAh
Results
of
our
teamSintered
Nickel
electrode0.80.6Newly
progressAfter
100cyclesAfter
300cyclesAfter
500cyclesCyclingDischarge
capacity
/mAh
(100&DOD,
8mol/LKOH)0.4number
0.3M
ZnO
5
100
100
1000.4M
ZnO
100
99.310.5M
ZnO
0.6M
ZnO
0.7M
ZnO
100
100
100
98.19
97.75
98.0220099.2398.5298.9198.7296.830510
15
20250.20.00.6M
ZnO30010010099.4499.6799.3440099.2499.1799.2299.1799.32Capacity
/
mAh
cm-2100
500
95.67
96.07
98.45
96.40
99.88The
presence
of
zinc
in
KOHelectrolytes
improves
the
cycli
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- PROTAC-MLKL-Degrader-2-生命科学试剂-MCE
- Propane-1-2-3-triyl-tritricosanoate-Standard-生命科学试剂-MCE
- Pretilachlor-Standard-生命科学试剂-MCE
- 生产线安全隐患排查及整改计划
- 云南省事业单位聘用人员审批表
- 2024年室内滑动门安装合同
- 2024年信息技术服务合同详细条款和条件
- 2024年工程承包担保协议书
- 项目施工年中综合检查安全评分表
- 煤矿应急值守制度
- 建筑材料知识点汇总
- 平面构成作品欣赏
- 隧道弃渣及弃渣场处理方案
- 隔代教育PPT课件
- 签证用完整户口本英文翻译模板
- 金属盐类溶度积表
- 社会工作毕业论文(优秀范文8篇)
- 医学交流课件:抗肿瘤化疗药物所致的神经毒性诊治
- 图形创意的联想方式及训练
- 幼儿园肥胖儿总结
- 中联泵送设备故障案例分析及解决办法
评论
0/150
提交评论