版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.图①是由五个完全相同的小正方体组成的立体图形.将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()A.主视图 B.俯视图C.左视图 D.主视图、俯视图和左视图都改变2.关于反比例函数图象,下列说法正确的是()A.必经过点 B.两个分支分布在第一、三象限C.两个分支关于轴成轴对称 D.两个分支关于原点成中心对称3.如果将抛物线y=﹣x2﹣2向右平移3个单位,那么所得到的新抛物线的表达式是()A.y=﹣x2﹣5B.y=﹣x2+1C.y=﹣(x﹣3)2﹣2D.y=﹣(x+3)2﹣24.若点A(﹣2,y1),B(﹣1,y2),C(4,y3)都在二次函数的图象上,则下列结论正确的是()A. B. C. D.5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②b2﹣4ac>0;③b>0;④4a﹣2b+c<0;⑤a+c<,其中正确结论的个数是()A.②③④ B.①②⑤ C.①②④ D.②③⑤6.若抛物线经过点,则的值在().A.0和1之间 B.1和2之间 C.2和3之间 D.3和4之间7.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④c=﹣3a,其中正确的命题是()A.①② B.②③ C.①③ D.①③④8.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是()A.16 B.13 C.19.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40° B.50° C.80° D.100°10.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣(t﹣4)2+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A.3s B.4s C.5s D.6s二、填空题(每小题3分,共24分)11.已知x=﹣1是方程x2+ax+4=0的一个根,则方程的另一个根为_____.12.若二次函数的图象与x轴交于A,B两点,则的值为______.13.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.14.如图,A是反比例函数图象上的一点,点B、D在轴正半轴上,是关于点D的位似图形,且与的位似比是1:3,的面积为1,则的值为____.15.点P(﹣6,3)关于x轴对称的点的坐标为______.16.如图,在中,,,,则的长为__________.17.如图,已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则的值为_____.18.如图,在平面直角坐标系中,抛物线与轴交于点,过点作轴的平行线交抛物线于点.为抛物线的顶点.若直线交直线于点,且为线段的中点,则的值为_____.三、解答题(共66分)19.(10分)对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境,为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的四个小区进行检查,并且每个小区不重复检查.请用列表或画树状图的方法求甲组抽到小区,同时乙组抽到小区的概率.20.(6分)如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4)(1)求出图象与x轴的交点A、B的坐标;(2)在二次函数的图象上是否存在点P,使S△PAB=S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.21.(6分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,求sinB的值.22.(8分)如图,抛物线的顶点坐标为,点的坐标为,为直线下方抛物线上一点,连接,.(1)求抛物线的解析式.(2)的面积是否有最大值?如果有,请求出最大值和此时点的坐标;如果没有,请说明理由.(3)为轴右侧抛物线上一点,为对称轴上一点,若是以点为直角顶点的等腰直角三角形,请直接写出点的坐标.23.(8分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)24.(8分)(1)计算:计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017;(2)先化简,再求值:÷,其中满足.25.(10分)如图,在坐标系中,抛物线经过点和,与轴交于点.直线.抛物线的解析式为.直线的解析式为;若直线与抛物线只有一个公共点,求直线的解析式;设抛物线的顶点关于轴的对称点为,点是抛物线对称轴上一动点,如果直线与抛物线在轴上方的部分形成了封闭图形(记为图形).请结合函数的图象,直接写出点的纵坐标的取值范围.26.(10分)已知等边△ABC的边长为2,(1)如图1,在边BC上有一个动点P,在边AC上有一个动点D,满足∠APD=60°,求证:△ABP~△PCD(2)如图2,若点P在射线BC上运动,点D在直线AC上,满足∠APD=120°,当PC=1时,求AD的长(3)在(2)的条件下,将点D绕点C逆时针旋转120°到点D',如图3,求△D′AP的面积.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图对两个组合体进行判断,可得答案.【详解】解:①的主视图是第一层三个小正方形,第二层中间一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;②的主视图是第一层三个小正方形,第二层左边一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;所以将图①中的一个小正方体改变位置后,俯视图和左视图均没有发生改变,只有主视图发生改变,故选:A.【点睛】本题考查了三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.2、D【分析】把(2,1)代入即可判断A,根据反比例函数的性质即可判断B、C、D.【详解】A.当x=2时,y=-1≠1,故不正确;B.∵-2<0,∴两个分支分布在第二、四象限,故不正确;C.两个分支不关于轴成轴对称,关于原点成中心对称,故不正确;D.两个分支关于原点成中心对称,正确;故选D.【点睛】本题考查了反比例函数的图象与性质,反比例函数(k是常数,k≠0)的图象是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限;当k<0,反比例函数图象的两个分支在第二、四象限.反比例函数图象的两个分支关于原点成中心对称.3、C【解析】先求出原抛物线的顶点坐标,再根据向右平移横坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】y=−x2−2的顶点坐标为(0,−2),∵向右平移3个单位,∴平移后的抛物线的顶点坐标为(3,−2),∴所得到的新抛物线的表达式是y=−(x−3)2−2.故选:C.【点睛】考查二次函数图象的平移,掌握二次函数图象平移的规律是解题的关键.4、D【分析】先利用顶点式得到抛物线对称轴为直线x=-1,再比较点A、B、C到直线x=-1的距离,然后根据二次函数的性质判断函数值的大小.【详解】解:二次函数的图象的对称轴为直线x=-1,a=-1<0,所以该函数开口向下,且到对称轴距离越远的点对应的函数值越小,A(﹣2,y1)距离直线x=-1的距离为1,B(﹣1,y2)距离直线x=-1的距离为0,C(4,y3)距离距离直线x=-1的距离为5.B点距离对称轴最近,C点距离对称轴最远,所以,故选:D.【点睛】本题考查了二次函数图象上点的坐标特征.熟练掌握二次函数的性质是解决本题的关键.5、B【分析】令x=1,代入抛物线判断出①正确;根据抛物线与x轴的交点判断出②正确;根据抛物线的对称轴为直线x=﹣1列式求解即可判断③错误;令x=﹣2,代入抛物线即可判断出④错误,根据与y轴的交点判断出c=1,然后求出⑤正确.【详解】解:由图可知,x=1时,a+b+c<0,故①正确;∵抛物线与x轴有两个交点,∴△=>0,故②正确;∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x==﹣1,∴b=2a<0,故③错误;由图可知,x=﹣2时,4a﹣2b+c>0,故④错误;当x=0时,y=c=1,∵a+b+c<0,b=2a,∴3a+1<0,∴a<∴a+c<,故⑤正确;综上所述,结论正确的是①②⑤.故选:B.【点睛】本题主要考查二次函数的图像与性质,关键是根据题意及图像得到二次函数系数之间的关系,熟记知识点是前提.6、D【分析】将点A代入抛物线表达式中,得到,根据进行判断.【详解】∵抛物线经过点,∴,∵,∴的值在3和4之间,故选D.【点睛】本题考查抛物线的表达式,无理数的估计,熟知是解题的关键.7、D【分析】①观察图象可得,当x=1时,y=0,即a+b+c=0;②对称轴x=﹣1,即﹣=﹣1,b=2a;③抛物线与x轴的一个交点为(1,0),对称轴为x=﹣1,即可得ax2+bx+c=0的两根分别为﹣3和1;④当x=1时,y=0,即a+b+c=0,对称轴x=﹣1,即﹣=﹣1,b=2a,即可得c=﹣3a.【详解】解:观察图象可知:①当x=1时,y=0,即a+b+c=0,∴①正确;②对称轴x=﹣1,即﹣=﹣1,b=2a,∴②错误;③∵抛物线与x轴的一个交点为(1,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(﹣3,0)∴ax2+bx+c=0的两根分别为﹣3和1,∴③正确;④∵当x=1时,y=0,即a+b+c=0,对称轴x=﹣1,即﹣=﹣1,b=2a,∴c=﹣3a,∴④正确.所以正确的命题是①③④.故选:D.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.8、B【解析】试题分析:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率=26=1考点:列表法与树状图法.9、D【分析】由题意直接根据圆周角定理求解即可.【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故选:D.【点睛】本题考查圆周角定理的运用,熟练掌握圆周角定理是解题的关键.10、B【分析】根据顶点式就可以直接求出结论;【详解】解:∵﹣1<0,∴当t=4s时,函数有最大值.即礼炮从升空到引爆需要的时间为4s,故选:B.【点睛】本题主要考查了二次函数的应用,掌握二次函数的应用是解题的关键.二、填空题(每小题3分,共24分)11、﹣4【分析】根据根与系数的关系:即可求出答案.【详解】设另外一根为x,由根与系数的关系可知:﹣x=4,∴x=﹣4,故答案为:﹣4【点睛】本题考查根与系数,解题的关键是熟练运用根与系数的关系,本题属于基础题型.12、﹣4【解析】与x轴的交点的家横坐标就是求y=0时根,再根据求根公式或根与系数的关系,求出两根之和与两根之积。把要求的式子通分代入即可。【详解】设y=0,则,∴一元二次方程的解分别是点A和点B的横坐标,即,,∴,∴,故答案为:.【点睛】根据求根公式可得,若,是方程的两个实数根,则13、6【解析】符合条件的最多情况为:即最多为2+2+2=614、8【分析】根据△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似比是1:3,得出,进而得出假设BD=x,AE=4x,D0=3x,AB=y,根据△ABD的面积为1,求出xy=2即可得出答案.【详解】过A作AE⊥x轴,∵△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似是1:3,∴,∴OE=AB,∴,设BD=x,AB=y∴DO=3x,AE=4x,C0=3y,∵△ABD的面积为1,∴xy=1,∴xy=2,∴AB⋅AE=4xy=8,故答案为:8.【点睛】此题考查位似变换,反比例函数系数k的几何意义,待定系数法求反比例函数解析式,解题关键在于作辅助线.15、(﹣6,﹣3).【分析】根据“在平面直角坐标系中,关于轴对称的两点的坐标横坐标相同、纵坐标互为相反数”,即可得解.【详解】关于轴对称的点的坐标为故答案为:【点睛】本题比较容易,考查平面直角坐标系中关于x轴对称的两点的坐标之间的关系,是需要识记的内容.16、6【分析】根据相似三角形的性质即可得出答案.【详解】∵DE∥BC∴∠ADE=∠ABC,∠AED=∠ACB∴△ADE∽△ABC∴∵∴又∴BC=6故答案为6.【点睛】本题考查的是相似三角形,比较简单,容易把三角形的相似比看成,这一点尤其需要注意.17、.【分析】作AC⊥y轴于C,BD⊥y轴于D,如图,利用反比例函数图象上点的坐标特征和三角形面积公式得到S△OAC=,S△OBD=,再证明Rt△AOC∽Rt△OBD,然后利用相似三角形的性质得到的值.【详解】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,∴S△OAC=×1=,S△OBD=×|﹣5|=,∵OA⊥OB,∴∠AOB=90°∴∠AOC+∠BOD=90°,∴∠AOC=∠DBO,∴Rt△AOC∽Rt△OBD,∴=()2==,∴=.∴=.故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.18、2【解析】先根据抛物线解析式求出点坐标和其对称轴,再根据对称性求出点坐标,利用点为线段中点,得出点坐标;用含的式子表示出点坐标,写出直线的解析式,再将点坐标代入即可求解出的值.【详解】解:∵抛物线与轴交于点,∴,抛物线的对称轴为∴顶点坐标为,点坐标为∵点为线段的中点,∴点坐标为设直线解析式为(为常数,且)将点代入得∴将点代入得解得故答案为:2【点睛】考核知识点:抛物线与坐标轴交点问题.数形结合分析问题是关键.三、解答题(共66分)19、.【分析】利用树状图得出所有可能的结果数和甲组抽到小区,同时乙组抽到小区的结果数,然后根据概率公式求解即可.【详解】解:画树状图如下:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率=.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握用树状图或列表法求解的方法是解题的关键.20、(1)A(﹣1,0),B(3,0);(2)存在合适的点P,坐标为(4,5)或(﹣2,5).【解析】试题分析:(1)由二次函数y=(x+m)2+k的顶点坐标为M(1,﹣4)可得解析式为:,解方程:可得点A、B的坐标;(2)设点P的纵坐标为,由△PAB与△MAB同底,且S△PAB=S△MAB,可得:,从而可得=,结合点P在抛物线的图象上,可得=5,由此得到:,解方程即可得到点P的坐标.试题解析:(1)∵抛物线解析式为y=(x+m)2+k的顶点为M(1,﹣4)∴,当y=0时,(x﹣1)2﹣4=0,解得x1=3,x2=﹣1,∴A(﹣1,0),B(3,0);(2)∵△PAB与△MAB同底,且S△PAB=S△MAB,∴,即=,又∵点P在y=(x﹣1)2﹣4的图象上,∴yP≥﹣4,∴=5,则,解得:,∴存在合适的点P,坐标为(4,5)或(﹣2,5).21、【解析】试题分析:求角的三角函数值,可以转化为求直角三角形边的比,连接DC.根据同弧所对的圆周角相等,就可以转化为:求直角三角形的锐角的三角函数值的问题.试题解析:解:连接DC.∵AD是直径,∴∠ACD=90°.∵∠B=∠D,∴sinB=sinD==.点睛:综合运用了圆周角定理及其推论.注意求一个角的锐角三角函数时,能够根据条件把角转化到一个直角三角形中.22、(1);(2)最大值为,点的坐标为;(3)点的坐标为,.【分析】(1)先设顶点式,再代入顶点坐标得出,最后代入计算出二次项系数即得;(2)点的坐标为,先求出B、C两点,再用含m的式子表示出的面积,进而得出面积与m的二次函数关系,最后根据二次函数性质即得最值;(3)分成Q点在对称轴的左侧和右侧两种情况,再分别根据和列出方程求解即得.【详解】(1)设抛物线的解析式为.∵顶点坐标为∴.∵将点代入,解得∴抛物线的解析式为.(2)如图1,过点作轴,垂足为,交于点.∵将代入,解得,∴点的坐标为.∵将代入,解得∴点C的坐标为设直线的解析式为∵点的坐标为,点的坐标为∴,解得∴直线的解析式为.设点的坐标为,则点的坐标为∴过点作于点∵∴故当时,的面积有最大值,最大值为此时点的坐标为(3)点的坐标为,.分两种情况进行分析:①如图2,过点作轴的平行线,分别交轴、对称轴于点,设点的坐标为∵∴∴在和中∴∴∵,∴解得(舍去),∴点的坐标为.②如图3,过点,作轴的平行线,过点作轴的平行线,分别交,于点,.设点的坐标∵由①知∴∵,∴解得,(舍去)∴点的坐标为综上所述:点的坐标为或.【点睛】本题是二次函数综合题,考查了待定系数法求解析式、二次函数最值的应用、解一元二次方程、全等三角形的判定及性质,解题关键是熟知二次函数在实数范围的最值在顶点取到,一线三垂直的全等模型,二次函数顶点式:.23、小亮说的对,CE为2.6m.【解析】先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.【详解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮说的对.答:小亮说的对,CE为2.6m.【点睛】本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.24、(1)8;(1)-1【解析】分析:(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(1)根据分式的加减法和除法可以化简题目中的式子,然后解方程,在其解中选一个使得原分式有意义的值代入即可解答本题.详解:(1)6cos45°+()-1+(-1.73)0+|5-3|+41017×(-0.15)1017=6×+3+1+5-3+41017×(-)1017=3+3+1+5−3−1=8;(1)÷==∵∴a=0或a=1(舍去)当a=0时,原式=-1.点睛:本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.25、(1);(2);(3).【分析】(1)将两点坐标直接代入可求出b,c的值,进而求出抛物线解析式为,得出C的坐标,从而求出直线AC的解析式为y=x+3.(2)设直线的解析式为,直线与抛物线只有一个公共点,方程有两个相等的实数根,再利用根的判别式即可求出b的值.(3)抛物线的顶点坐标为(-1,4),关于y轴的对称点为M(1,4),可确定M在直线AC上,分直线不在直线下方和直线在直线下方两种情况分析即可得解.【详解】解:将A,B坐标代入解析式得出b=-2,c=3,∴抛物线的解析式为:当x=0时,y=3,C的坐标为(0,3),根据A,C坐标可求出直线AC的解析式为y=x+3.直线,设直线的解析式为.直线与抛物线只有一个公共点,方程有两个相等的实数根,,解得.直线的解析式为..解析:如图所示,,抛物线的顶点坐标为.抛物线的顶点关于轴的对称点为.当时,,点在直线上.①当直线不在直线下方时,直线能与抛物线在第二象限的部分形成封闭图形.当时,.当直线与直线重合,即动点落在直线上时,点的坐标为.随着点沿抛物线对称轴向上运动,图形逐渐变小,直至直线与轴平行时,图形消失,此时点与抛物线的顶点重合,动点的坐标是,②当直线在直线下方时,直线不能与抛物线的任何部分形成封闭图形.综上,点的纵坐标的取值范围是.【点睛】本题是一道二次函数与一次函数相结合的综合性题目,根据点坐标求出抛物线与直线的解析式是解题的关键.考查了学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件工程课程设计 物流
- 课程设计国内外教育差距
- 毛概课程设计基本理念
- 拉压传感器课程设计
- 美甲课程设计
- 桌游活动室创业
- 食品技术原理课程设计
- 门铰链右片冲压课程设计
- 机械课程设计思考题
- 航天主题课程设计
- 妇联五年工作总结九篇
- 锅炉使用单位每日锅炉安全检查记录、每周锅炉安全排查治理报告、每月锅炉安全月调度会议纪要
- 饥荒游戏修改编程
- 牧童笛的基础知识与演奏技能 用舌技术怎样演奏好吐音
- 康复医学课件:骨关节疾病康复
- 牵引及石膏病人的护理
- 铁路混凝土拌和站标准化管理演示
- 2023年现行施工规范大全
- 竞争性磋商评分办法综合评分法
- 林汉达中国历史故事集导读
- 创新高质量发展理念 打造“一院多区”集团化财务管理体系
评论
0/150
提交评论