2022年圆锥体积教学设计_第1页
2022年圆锥体积教学设计_第2页
2022年圆锥体积教学设计_第3页
2022年圆锥体积教学设计_第4页
已阅读5页,还剩89页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页2022圆锥体积教学设计圆锥体积教学设计

作为一名无私奉献的老师,总归要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么什么样的教学设计才是好的呢?下面是我帮大家整理的圆锥体积教学设计,欢送阅读,希望大家能够喜欢。

圆锥体积教学设计1

一、教学目标

1、知识与技能

理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

2、过程与方法

通过操作、实验、观察等方式,引导学生进行比拟、分析、综合、猜测,在感知的根底上加以判断、推理来获取新知识。

3、情感态度与价值观

渗透知识是“互相转化〞的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

二、教学重、难点

重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

难点:理解圆锥体积公式的推导过程。

三、教具学具

不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

四、教学流程

〔一〕创设情境,提出问题

师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种〔课件出示三个大小不同的冰淇淋〕,每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?

生:我选择底面最大的;

生:我选择高是最高的;

生:我选择介于二者之间的。

师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?

生:只要求出冰淇淋的体积就可以了。

师:冰淇淋是个什么形状?〔圆锥体〕

生:你会求吗?

师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。

〔二〕设疑激趣,探求新知

师:那么你能想方法求出圆锥的体积吗?

〔学生猜测求圆锥体积的方法。〕

生:我们可以利用求不规那么物体体积的方法,把它放进一个有水的容器里,求出上升那局部水的体积。

师:如果这样,你觉得行吗?

教师根据学生的答复做出最后的评价;

生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?

师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?

小组中大家商量。

生:我们组认为可以将圆锥转化成长方体或正方体,比方:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

师:此种方法是否可行?

学生进行评价。

师:哪个小组还有更好的方法?

生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。〕

师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比拟他们的底与高的大小关系。

1、各小组进行观察讨论。

2、各小组进行交流,教师做适当的板书。

通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。

3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?〔小组讨论〕

4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。

师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高〞来表示圆锥体的体积行不行?为什么?

师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?

生:大约是圆柱的一半。

生:……

师:到底谁的意见正确呢?

师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜测,不过在实验前先阅读实验要求,〔课件演示〕只有目标明确,才能更好的合作。开始吧!

要求:1、实验材料,任选沙、米、水中的一种。

2、实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。

〔生进行实验操作、小组交流〕

师:1、谁来汇报一下,你们组是怎样做实验的?

2、通过做实验,你们发现它们有什么关系?

生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。

生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。〕

师:同学们得出这个结论非常重要,其他组也是这样的吗?生略

师:请看大屏幕,看数学小博士是怎样做的?〔课件演示〕

齐读结论:

师:你能根据刚刚我们的实验和课件演示的情况,也给圆锥的体积写一个公式?

〔小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,那么v圆锥=sh÷3即v圆锥=1/3sh

师:同学们刚刚我们得到了圆锥的体积公式,〔请看课件〕你能求出三种冰淇淋的体积?

〔噢!三种冰淇淋的体积原来一样大〕

五、联系生活,拓展运用

本练习共有三个层次:

1、根本练习

〔1〕判断对错,并说明理由。

圆柱的体积相当于圆锥体积的3倍。〔〕

一个圆柱木料,把它加工成最大的圆锥,削去的局部的体积和圆锥的体积比是〔〕

一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。〔〕

〔2〕计算下面圆锥的体积。〔单位:厘米〕

s=25.12h=2.5

r=4,h=6

2、变形练习

出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,

得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米,

〔1〕、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?

〔2〕、找一找这些计算方法有什么共同的特点?v锥=1/3sh

〔3〕、准备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深?

3、拓展练习

一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

活动五:整理归纳,回忆体验

〔通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。〕

圆锥体积教学设计2

教学内容:

九年义务教育六年制小学数学第十二册P32页。

教学目标:

1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。

2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。

3、进一步培养学生将所学知识运用和效劳于生活的能力。

教学重点:

灵活运用圆柱圆锥的有关知识解决实际问题。

教学难点:

同教学难点。

设计理念:

练习的过程是学生将所学知识内化、升华的过程,练习过程中既有根底知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。力求使不同层次的学生都学有收获。

教学步骤、教师活动、学生活动

一、复习铺垫、内化知识。1.圆锥体的体积公式是什么?我们是如何推导的?

2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。

〔1〕一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是〔〕立方厘米。

〔2〕一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是〔〕立方厘米。

〔3〕一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是〔〕立方厘米,圆锥的体积是〔〕立方厘米。

3.求以下圆锥体的体积。

〔1〕底面半径4厘米,高6厘米。

〔2〕底面直径6分米,高8厘米。

〔3〕底面周长31.4厘米.高12厘米。

4、教师根据学生练习中存在的问题,集体评讲。同座位的同学先说一说圆锥体积公式的推导过程。

学生独立练习,互相批改,指出问题。

学生交流一下这几题在解题时要注意什么?

二、丰富拓展、延伸练习。1.拓展练习:

(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的局部占圆柱体的几分之几?

〔2〕一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?

2.完成31页第5题。讨论以下问题:

〔1〕圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?

〔2〕圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?

3.分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?

学生分组讨论,教师参与其中,以有疑问的方式参与讨论。

三、充分提高,全面升华。

1.展示一个圆锥形的沙堆,小组讨论一下用什么方法可以测量出它的体积。

2.教师给每一组一小袋米。让学生在桌子上堆成一个近似的圆锥体,通过合作测量的形式求出它的体积。

3.讨论练习八蒙古包所占空间的大小的方法。

〔1〕蒙古包是由哪几个局部组成的?

〔2〕上部的圆锥和下部的圆柱有哪些相同的地方,有哪些不同的地方?

〔3〕同学们能独立地求出蒙古包所占的空间的大小吗?请试一试。

4.交流一下本节课的收获。

学生分组讨论后动手实践并计算。

学生先交流。

四、全课总结,内化知识。

1.提问:

(1)同学们掌握了圆锥体的哪些知识?

(2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?

2.学有余力的同学思考38页思考题。

3.作业:练习八6、7、8

学生独立练习

圆锥体积教学设计3

一、教学内容:义务教育课程标准实验教科书〔北师大版〕六年级下册第11~13页

二、教学目标:

1、知识技能目标:

◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;

◆使学生会应用公式计算圆锥的体积并解决一些实际问题。

2、思维能力目标:

◆提高学生实践操作、观察比拟、抽象概括的能力,开展空间观念。

3、情感态度目标:

◆使学生在经历中获得成功的体验,体验数学与生活的联系。

三、教学重点、难点:

重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题

难点:探索圆锥体积的计算方法和推导过程。

四、教具准备:

1、多媒体课件。

2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。

五、教学过程:

〔一〕创设情境,导入新课

1、故事情景引发猜测

电脑呈现出动画情境〔伴图配音〕。

炎热的夏天,小明和小强去“广场超市〞的冷饮专柜买冰淇淋,圆锥形的冰淇淋标价是0.8元,圆柱形的标价2元。于是,他们两个为买哪一种形状的冰淇淋争执起来。同学们,你们能帮他们解决到底买哪种形状的冰淇淋更合算吗?〔图中圆柱形和圆锥形的雪糕是等底等高的。〕

(学生答复自己的猜测,有说买圆锥形的,有说买圆柱形的)

教师:学完今天的内容后,同学们就能正确解决了!

2、圆锥实物揭示课题

①教师出示一筒沙,师:将这筒沙倒在桌上,会变成什么形状?

〔学生猜测后教师演示〕

②师:在这堂课上,你希望学到哪些知识呢?

〔生自主答复,确立学习目标〕

③揭题:圆锥的体积

师:好,我们一起努力吧!

〔二〕自主探索,合作交流

1、直观引入直觉猜测

(1)教师演示刨铅笔:把一支圆柱形铅笔的笔头刨成圆锥形。

(2)引导学生观察,并思考:你觉得圆锥的体积与相应的圆柱体积之间有联系吗?你认为有什么联系?

①教师鼓励学生大胆猜测。〔生说可能的情况〕

②师:你们是怎样理解“相应的〞一词的?说说你的看法。

生说后,师总结:“相应的〞,即圆锥与圆柱是等底等高的。〔用实物演示给生看〕

2、实验探索发现规律

〔1〕小组讨论填写材料单,有顺序地领取材料

学生分6组操作实验,教师巡回指导。〔其中4个小组的实验材料:沙子、米、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子、米等,等底不等高和等高不等底的圆柱形和圆锥形容器各一个〕

〔2〕小组合作实验,并填写实验报告单。

实验方法

发现结果

第一次实验

第二次实验

第三次实验

结论:

〔3〕汇报结果,实物投影展示实验报告单。

〔4〕组际交流,得出结论:

结论1:圆锥的体积v等于和它等底等高圆柱体积的三分之一。

结论2:等底不等高的圆锥体与圆柱体,圆锥的体积是圆柱体积的二分之一。

结论3:等高不等底的圆锥体与圆柱体,圆锥的体积是圆柱体积的四分之一。

结论4:圆柱的体积正好是圆锥体积的3倍。

结论5:圆柱的体积是等底等高的圆锥体积的3倍。

……

师:同学们实验的结论各不相同,到底哪组的结论对呢?

〔各小组纷纷表达自己小组的实验过程、结论;说明自己小组的准确性,学生的思维处于高度集中状态〕。

〔5〕参与处理信息。

围绕三分之一或3倍关系的情况讨论:

师:我们先来看得出三分之一或3倍关系的这几个小组;请小组代表说说他们是怎样通过实验得出这一结论的?

〔请他们拿出实验用的器材,自己比划、验证这个结论。突出他们小组的圆柱和圆锥是等底等高的〕

师:其他小组得出的结论不同,是不是由于实验过程或结论有错误呢?我们也请小组代表说说你们的看法。

〔生说明他们的过程和结论都是对的,只是他们的圆锥和圆柱不是即等底又等高的〕。

师:总结以上各个小组的看法,我们可以得出什么样的结论?

生1:圆锥的体积等于和它等底等高圆柱体积的三分之一。

生2:圆柱的体积是等底等高的圆锥体积的3倍。

生3:我认为第一种说法较合理,强调了圆锥体积的求法。

……

师总结并板书:

圆锥的体积等于和它等底等高的圆柱体积的1/3。

3、启发引导推导公式

师:对于同学们得出的结论,你能否用数学公式来表示呢?

生:因为圆柱的体积计算公式v=sh;所以我们可以用1/3sh表示圆锥的体积。

师:其他同学呢?你们认为这个同学的方法可以吗?

生:可以。

师:那我们就用1/3sh表示圆锥的体积。

计算公式:v=1/3sh

>师:〔1〕这里sh表示什么?为什么要乘1/3?

〔2〕要求圆锥体积需要知道哪两个条件?

生答复,师做总结

4、简单应用尝试解答

例1:〔课件出示教材情景图〕在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?

(生独立列式计算全班交流)

〔三〕稳固练习,运用拓展

1、试一试

一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米?

2、练一练

计算下面各圆锥的体积:

3、实践性练习

师:请你们将做实验时装在圆柱容器里的沙〔或米〕倒出,堆成一个圆锥形沙〔米〕堆,小组合作测量计算它的体积。

4、开放性练习

一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?〔可小组讨论〕

〔四〕整理归纳,回忆体验

1、上了这些课,你有什么收获?〔互说中系统整理〕

2、用什么方法获取的?你认为哪组表现最棒?

3、通过这节课的学习,你有什么新的想法?还有什么问题?

〔五〕问题解决。〔电脑呈现出动画情境〕

小明和小强到底买哪种形状的冰淇淋更合算呢?

师:谁能帮他们解决这个问题呢?

〔学生说出买圆柱形的冰淇淋更合算的理由。〕

六、板书设计:

圆锥的体积

圆锥的体积等于和它等底等高的圆柱体积的1/3。

七、设计反思:

?数学课程标准?指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。〞因此,在教学圆锥体积计算时,一改以前教师演示或在教师指令下实验的做法;采取提供学生材料和时机,引导学生自主探究的学习方式。具体表现在:

〔1〕密切数学与生活的联系,富有儿童情趣。

从学生熟悉的生活故事引入,为新知识作好铺垫和准备。又从刨铅笔直观引入,引发学生大胆猜测,学生的主动性,探究性得到培养。最后的问题解决回归于生活,实现了丛生活中来,又效劳于生活的指导思想。

〔2〕在经历“错误〞之中历炼思维

在平时的课堂教学中,学生往往会出现很多错误性的东西,比方:错误的认识、错误的过程、错误的结论等。很多老师不是“遇错即纠〞,就是“遇错即批〞,其实大可不必,因为错误之中也有可以充分利用的珍贵资源。“授人以鱼,不如授之以渔〞。学生学习数学不仅要学会题的解法,更要懂得解法的来龙去脉。我们要利用“错误〞这一资源让学生思考问题,经历碰壁,最终找到解决问题的方法,把思考的实际过程展现给学生,让学生经历思维的碰撞,真正关注学习的过程,帮助他们理解和掌握数学思维和方法。

为了使学生对“等底等高〞这一条件能牢固掌握并深刻理解,在分发学具时,我有意将等底等高、等底不等高和等高不等底的三组不同的圆锥形和圆柱形容器分发给各小组,学生通过动手操作后,得出的结论大不相同,在学生汇报的过程中,意见发生了重大分歧,不同结论的各小组都坚持自己的结论准确无误,认知出现了剧烈的冲突,此时,我并没有给出评判,而是要求学生认真去观察、比拟、发现各自小组的圆锥和圆柱有什么相同或不同的地方,通过观察、比拟,最后终于得出只有在等底等高的条件下圆锥的体积才等于圆柱体积的三分之一。这样做既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的开展。而这些目标的实现,完全是利用“错误〞这一资源产生的效果

〔3〕学习过程中揭示了一般科学的研究方法:

提出问题——直觉猜测——实验探索——合作交流——实验验证——得出结论——实践运用。这为以后的探究学习提供了一个根本方法,使学生在自主探索中掌握了知识,同时获得了最广泛的数学活动经验、思想和方法,更开展了学生的反思意识、小组自我评价意识。课堂中,启发学生提问,猜测,动手测量,注重了解决问题能力的培养,学生体验到了成功的快乐。

纵观本节课的设计,运用现代教学理论,以新课程的理念指导教学,较好的处理了主导和主体、知识和能力、过程和结论的关系,充分调动了学生的积极性,引导全体学生动脑、动手、动口参与学习的全过程。整节课教学目标明确,教学层次清楚。结构严谨,重点突出。

圆锥体积教学设计4

一、教学内容

?圆锥的体积?是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

二、教材分析

本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点局部。〞六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。

三、教学目标

1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。

2、能运用公式解答有关的实际问题。

四、教学重难点

教学重点:圆锥体积的计算公式

教学难点:圆锥的体积公式推导。

五、课前准备

课件

六、教学过程

一、谈话引入

今天,我们来学习圆锥的体积公式是怎样推导出来的?

二、自主探索,操作实验

下面,我们一起来做个小实验

〔1〕取一个圆柱体的容器和圆锥体的容器各一个。让学生观察一下,得出:这两个容器等底等高。

〔2〕往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。

〔3〕这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。用字母表示:v=1/3sh

三、练习填空

1、圆锥的体积=〔〕,用字母表示是〔〕。

2、圆柱体积的与和它〔〕的圆锥的体积相等。

3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是〔〕立方分米。

学生练习,教师总结。

四、稳固练习:

求下面各圆锥的体积,只列算式。〔单位:厘米〕

观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。

五、运用所学的知识解决实际问题

一堆大米,近似于圆锥形,量得底面周长是18、84米,高6米。它的体积是多少立方米?一堆大米,近似于圆锥形,量得底面周长是18、84米,高6米。它的体积是多少立方米?

学生思考,教师讲解:

先求半径:18、84÷3、14÷2=3〔米〕

再求底面积:3、14×3=28、26〔平方米〕

求圆锥体积:1/3×28、26×6=56、52〔立方米〕

最后求大米的重量:56、52×500=28260〔千克〕

六、计算圆锥的体积所必须的条件

学生思考,教师归纳总结

计算圆锥的体积所必须的条件可以是:

底面积和高

底面半径和高

底面直径和高

底面周长和高

只要知道啦其中的两个条件,就可以求出圆锥的体积。

微课学习指导

本微课的教学内容为?圆锥的体积?是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

微课视频共8分53秒,前18秒为片头,后面是利用圆柱的体积推导出圆锥的体积,利用实验推导的过程及练习稳固的过程。

配套学习资料

圆柱的体积公式

圆柱的体积公式等于底面积乘高,用字母表示:V=sh

微课制作技术

1、使用ppt制作片头。

2、使用摄录视频效果。

3、使用CamtasiaStudio软件和会声会影软件进行后期的混音制作和整合。

4、使用格式工厂进行最后的格式转换。

教学需求分析

适用对象分析:适用于六年级下册的学生,在学习了圆柱的体积之后才能学习此内容。

学习内容分析:?圆锥的体积?是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

学习目标分析:

〔1〕通过动手操作参与实验,发现等底等高的圆柱圆锥体积之间的关系,从而得出圆锥体积的计算公式。

圆锥体积教学设计5

教学目标:

1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。

2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜测、探索和发现的过程,推导出圆锥的体积公式。

3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。

教学重点:通过实验的方法,得到计算圆锥的体积。

教学难点:运用圆锥的体积公式进行正确地计算。

教学准备:等底等高的圆柱和圆锥容器模型各一个。

教学过程:

一、复习导入

师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。

1、圆柱体积的计算公式是什么?〔指名学生答复〕

2、圆锥有什么特征?

同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!〔板书:圆锥的体积〕

二、探究新知

课件出示等底等高的圆柱和圆锥

1、引导学生观察:这个圆柱和圆锥有什么相同的地方?

学生答复:它们是等底等高的。

猜测:

〔1〕、你认为圆锥体积的大小与它的什么有关?

〔2〕、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?

2、学生动手操作实验

〔1〕、用圆锥装满水〔要装满但不能溢出来〕往圆柱倒,倒几次才把圆柱倒满?

〔2〕、通过实验,你发现了什么?

小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一。

3、教师课件边演示边表达:现在圆锥和圆柱里都是空的。看看圆柱和圆锥有什么相同的地方?〔等底等高〕请同学们注意观察,用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?

问:把圆柱装满一共倒了几次?

生:3次。

师:这说明了什么?

生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。〔板书:圆锥的体积=1/3×圆柱体积〕

师:圆柱的体积等于什么?

生:等于“底面积×高〞。

师:那么,圆锥的体积可以怎样表示呢?〔板书:圆锥的体积=1/3×底面积×高〕

师:用字母应该怎样表示?〔V=1/3sh〕

师:在这个公式里你觉得哪里最应该注意?

三、教学试一试

一个圆柱形零件,底面积是170平方厘米,高是12厘米。这个零件的体积是多少立方厘米?

四、稳固练习

1、计算圆锥的体积

2、判一判

3、算一算

4、拓展延伸

五、总结

通过这节课的学习,你有什么收获呢?

六、板书:

圆锥的体积=圆柱的体积×1/3

圆锥的体积=底面积×高×1/3

用字母表示V=1/3sh

圆锥体积教学设计6

教学目标

1、使学生理解和掌握圆锥的特征及各局部名称。

2、使学生掌握测量圆锥的高的方法。

教学重点、难点:

认识圆锥体,掌握圆锥体体积的计算方法。圆锥体体积的计算方法的推导。

教具准备:

圆锥体物品、生活中圆锥体的应用图片、资料

教学过程:

一、揭示课题

今天我们来认识一种形状的物体——圆锥〔板书课题〕什么形状的物体是圆锥形的呢?

〔实物呈现〕

我们把象这样的几何形体叫做圆锥体,简称圆锥。

二、探究体验。

1、观察圆锥的特征

师:请同学们拿出圆锥体模型,看一看、想一想,你都想知道有关圆锥的哪些知识?

生可能提出:

a、我想知道圆锥的特征。

b、我想知道圆锥有几条高?它的高指的是什么?

c、我想知道圆锥的侧面展开是什么形状的?

师:请同学们拿出圆锥体模型,看一看、摸一摸、玩一玩、也可以猜一猜你能发现什么?

a我们发现圆锥上面细,下面粗。

b圆锥有一个尖尖的局部,摸起来很扎手。我们把它叫做顶点。

c圆锥有一个弯曲光滑的面,我们可以把它叫做侧面。这个面是曲面。

d圆锥有一个圆形的面,我们可以把他叫做底面。

e我们还发现圆锥的底面朝下立者,尖朝下不立者。

归纳:圆锥的底面是个圆,侧面是个曲面,有一个顶点。

2、圆锥的高

师:这个圆锥高多少?

学生就会想高在哪里?

师再说明什么是圆锥的高:

圆锥的高是从圆锥的顶点到底面圆心的距离。

师:圆锥的高有几条呢?〔1条〕

画图表示

3、测量圆锥的高。

师:通过刚刚的学习我们掌握了圆锥的特征及圆锥各局部的名称,我们知道圆锥的高是从圆锥的顶点到底面圆心的距离,那怎样来测量圆锥的高呢?

学生自由测量,汇报。

师再课件演示测量圆锥高的方法、过程。

三、课堂总结

圆锥的认识教学反思:

本节课是在学生认识了圆和圆柱的相关知识的基

础上进行教学的,教学立足于促进学生的开展,紧密联系生活实际,在对教材进行了充分地分析后,教学设计我注重了以下几点:

1、注重联系生活实际,提高运用所学知识解决实际问题的意识与能力。

课前安排学生收集、整理生活中应用圆锥的实例和信息资料。教学时首先列举生活中大量的圆锥实物,在学生观察思考这些物体形状的共同特点,并从实物中抽象出几何形体的根底上引入。再引导学生对照模型和图形,互说圆锥的特征,加深对圆锥的认识。课后让学生创作一个圆锥的物品,进一步感受几何知识在生活中的应用,同时提高学生运用数学为生活效劳的意识和能力。

2、给学生提供充足的与学习的时间和空间。

本节始终以学生的开展为本开展课堂有效教学,表达了学生为学习的主体,我们知道学生的数学能力的提高,在很大程度上,取决于主体意识的形式和主体参与能力的培养。要实现以学生的开展为本,应该注意让学生学习自行获得数学知识的方法,学习主动参与数学实践的能力,获得终生受用的数学创造才能。在本课中,无论问题的引入,圆锥概念的定义,高的寻找及测量方法的探索,老师都给予学生充足的时间进行尝试、研究和讨论中进行,让学生以不同的方式进行合作、交流,这样的过程,不仅提供了学生自主学习的时机,也提高了学生自主参与学习的意识和信心,大家积极发言,争先操作,参与率很高。

3、加强学生在操作中对空间与图形问题的思考。

从建构主义理论的根本理念来看:“知识不是被动接受的,而是由认知主体主动建构的〞。教师的任务是引导和帮助学生进行再创造的工作,而不是把现有的知识灌输给学生。学生的能力可能比不上数学家,但通过类似的数学活动,也可以很好的获得数学或理解数学。在本课例中,老师积极地创造时机让学生自己去学习或者去探究问题。通过“看一看〞,“摸一摸〞,“想一想〞,“玩一玩〞,“猜一猜〞等问题情境,让学生亲身感受数学,在“找〞中学,在“测〞中学,在“思〞中学,培养学生动手操作能力、直观思维和抽象思维能力,使数学课堂教学“动〞起来、“活〞起来,让学生在“做〞中学,使数学课堂焕发出生命活力。

4、合理运用传统教具、学具和现代多媒体辅助教学。

本课中,将传统教具、学具和现代多媒体网络技术有机的结合起来,直观、形象地展示大量圆锥形图片帮助学生建立圆锥的表象,以及动态演示圆锥侧面的展开过程、圆锥高的测量方法等,有效地突破教学中的难点,提高课堂教学效率。

圆锥体积教学设计7

1、认知目的:

〔1〕让学生认识圆锥,掌握它的特征。

〔2〕理解圆锥的体积计算公式的推导,并能灵活运用公式计算圆锥的体积。

2、能力目的:

开展学生的空间观念,培养学生观察,动手操作,总结规律的能力。

3、情感目的:

创造和谐的师生关系,调动学生的非智力因素,激发学生的学习兴趣。

教学重点:

建立圆锥体的表象,概括圆锥体的特征,并能运用公式计算圆锥体的体积。

教学难点:

理解等底等高的圆锥体和圆柱体的关系,以及圆锥体积公式的推导过程。

教学准备:

1、多媒体计算机软、硬件一套。

2、学生实验用圆柱、圆锥容器十套,红色溶液一桶。

3、幻灯机,圆锥体实物如:小丑帽、重锤等。

教学过程:

一、复习准备:

1、圆柱的体积计算公式是什么?

2、一个圆柱的半径是2厘米,高是5厘米,它的体积是多少?

二、导出新课:

我们已经学习过了长方体和正方体及圆柱体的体积,在实际生活中,经常会遇到另一种物体〔出示圆锥体实物如:小丑帽、重锤〕,这种形体叫圆锥体。你们在生活中见过这样的物体吗?〔请学生答复〕这节课我们重点研究圆锥的体积。〔板书课题:圆锥的体积〕

三、新授:

1、学生通过对圆锥实物及电脑图形的观察,多角度多种实物中得到对圆

锥感性认识,在建立了感性认识的根底上,师生共同总结出圆锥的特征是:它只有一个底面;这个底面是一个圆;它有一个顶点。

教师拿出已准备好的圆锥教具,将其一分为二,叫学生观察圆锥的高,指出从顶点到底面圆心的距离叫圆锥的高。

2、绍各局部的名称〔用电脑出示圆锥图形〕

3、圆锥体积公式的推导:

通过分组实验让学生自己发现圆柱、圆锥在等底等高时的体积关系。在实验前教师提出实验的要求和实验要解决的问题。

问题:〔1〕圆锥与圆柱是否等底等高?

〔2〕倒了几次才能倒满空圆柱?

〔3〕这个实验说明等底等高的圆柱、圆锥体积有怎样的关系?

要求:〔1〕分五人一组,相互合作,共同完成实验。

〔2〕教师每组给一个中空、未封底的圆锥,学生自己动手制作一个与它等底等高的圆柱。制作的圆柱也不封底。

〔3〕将圆锥装满溶液,然后倒入圆柱里,装满圆柱为止。

实验结束后,让学生自己总结得出结论,教师根据学生得出的结论得出Ⅴ锥=

圆锥体积教学设计8

教学目标:

1、使学生理解圆锥体积计算的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算。

2、培养学生初步的空间观念、逻辑思维能力、动手操作能力、创新能力。

3、渗透知识“相互转化〞的辨证唯物主义思想和猜测、验证等数学思想方法。

教学重点:

掌握圆锥体积计算的方法并运用圆锥的体积计算方法解决实际问题。

教学难点:

理解圆锥体积公式的推导过程,渗透猜测、验证等数学思想方法,培养学生的实践能力。

教具准备:

一对等底等高的空心圆柱、圆锥和一桶水为一份教具,准备6份。一桶沙子。

教学过程:

〔一〕复习旧知,课前铺垫

1。怎样计算圆柱的体积?

指名答复,教师板书:圆柱体的体积=底面积×高。

2。一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?

指两名板演,全班齐练,集体订正。

〔二〕提出质疑,引入新课

圆锥有什么特征?它的体积如何计算呢?

今天我们就利用这些知识探讨新的——怎样计算圆锥的体积〔板书课题〕

〔三〕动手操作,获得新知

1。探讨圆锥的体积公式

教师:怎样探讨圆锥的体积计算公式呢?在答复这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:

学生答复,教师板书:

圆柱——〔转化〕——长方体

圆柱体积公式——〔推导〕——长方体体积公式

教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比拟。

〔1〕提问学生:你发现到什么?〔这个圆柱体和这个圆锥体的形状有什么关系〕

〔学生得出:底面积相等,高也相等。〕

底面积相等,高也相等,用数学语言说就叫“等底等高〞。

〔板书:等底等高〕

〔2〕为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高〞来求圆锥体体积行不行?为什么?

教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?〔指名发言〕

用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

〔3〕学生分组做实验。

谁来汇报一下,你们组是怎样做实验的?

你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?〔学生发言:圆柱体的体积是圆锥体体积的3倍〕

同学们得出这个结论非常重要,其他组也是这样的吗?

我们学过用字母表示数,谁来把这个公式整理一下?〔指名发言〕

〔4〕学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比拟,通过比拟你发现什么?

学生答复后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的三分之一。〔老师拿起一个小圆锥、一个大圆柱〕如果老师把这个大圆锥体里装满了沙子,往这个小圆柱体里倒,倒三次能倒满吗?〔不能〕

为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?〔因为是等底等高的圆柱体和圆锥体。〕

在等底等高的情况下。

〔老师在体积公式与“等底等高〞四个字上连线。〕

现在我们得到的这个结论就更完整了。〔指名反复表达公式。〕

教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想方法推出计算公式?让学生动脑动手?

得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3。

小结:今后我们求圆锥体体积就用这种方法来计算。

〔5〕应用稳固

1。出例如题学生读题,理解题意,自己解决问题。

例一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

学生完成后,进行小组交流。

你是怎样想的和怎样解决问题。〔提问学生多人〕

教师板书:

1/3×19×12=76〔立方厘米〕

答:它的体积是76立方米

2、练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?〔学生在黑板上只列式,反应。〕

3。出例如2:要求学生自己读题,理解题意思。

有一个近似于圆锥的小麦堆,测得底面半径是2米,高是1。5米。你能计算出这堆小麦的体积吗?

〔1〕提问:从题目中你知道什么?

〔2〕学生独立完成后教师提问。并答复同学的质疑:3。14×〔〕×1。5表示什么?为什么要先求圆锥的体积?得数保存整千克数是什么意思?4。比拟:例1和例2有什么地方不同?

1〕直接告诉了我们底面积,而〔2〕没有直接告诉,要求我们先求出底面积,再求出圆锥体积。

〔四〕综合练习,开展思维

1、一个圆锥形沙堆,高是1。5米,底面半径是2米,每立方米沙重1。8吨。这堆沙约重多少吨?

2。选择题。

每道题下面有3个答案,你认为哪个答案正确就用手指数表示。

〔1〕一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是〔〕

⑴a立方米②3a立方米③9立方米

〔2〕把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是〔〕立方米

〔1〕6立方米〔2〕3立方米〔3〕2立方米

四、小结:

这节课同学们有什么收获?你是怎样学习的?

五、开放性作业:

要使等底等高的圆柱与圆锥体积相等,你有什么方法?〔生讲师课件演示〕

教学反思:

1、这节课,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒水实验,而是通过师生交流、问答、猜测等形式,调动学生学习的积极性,激发学生强烈的探究欲望。学生迫切希望通过实验来证实自己的猜测,所以做起实验就兴趣盎然。特别是用不同的方法推到出计算公式,开阔学生思维,提高学生学习积极性。

2、通过验证猜测这一实践活动,让学生运用学具操作探究、体验活动中,去参与知识的生成过程、开展过程,主动地发现知识,体会数学知识的来龙去脉,培养学生主动获取知识的能力。组织学生主动探索,在此教师成功地转换了自己在课堂教学中的角色和作用,能根据学生已有的认知根底组织和展开教学活动,充分发挥了课堂教学中学生的主体作用。

3、小学阶段学习的几何知识是直观几何。小学生学习几何知识不是靠严格的论证,而主要是通过观察、操作。根据课题的特点,本课主要采取让学生做实验的方法主动获取知识。主要引导学生做了三次实验。第一次是比拟圆柱和圆锥的底和高,强调等底等高的圆柱和圆锥才有一定的倍数关系;第二次,让学生将圆锥中的水倒入与其等底等高的圆柱之中,直至三次倒完,让学生感受到“圆锥的体积是与它等底等高的圆柱体积的1/3,圆柱的体积是与它等底等高的圆锥体积的三倍〞;第三次,用沙子实验验证“不是任何一个圆锥体的体积都是任何一个圆柱体体积的三分之一〞。搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。

4、本课在根底知识教学的根底上进行呈现方式和解题策略的适当开放,较恰当地处理好了继承和创新的关系。

只是,这节课学生是在教师预设引导中探究。为什么要学的疑念,怎样学的策略,可能还不够突显,有待于探究。"

圆锥体积教学设计9

第一课时

教学目标:

1、使学生理解求圆锥体积的计算公式.

2、会运用公式计算圆锥的体积.

3、培养学生初步的空间观念和思维能力;让学生认识“转化〞的思考方法。

教学重点

圆锥体体积计算公式的推导过程.

教学难点

正确理解圆锥体积计算公式.

教学过程:

一、铺垫孕伏

1、提问:

〔1〕圆柱的体积公式是什么?

〔2〕投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.〔板书:圆锥的体积〕

二、探究新知

〔一〕指导探究圆锥体积的计算公式.

1、教师谈话:

下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体〔或圆锥体〕容器里装满沙土〔用直尺将多余的沙土刮掉〕,倒人圆锥体〔或圆柱体〕容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

2、学生分组实验

学生汇报实验结果

①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

……

4、引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的.

板书:

5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:

6、思考:要求圆锥的体积,必须知道哪两个条件?

7、反应练习

圆锥的底面积是5,高是3,体积是〔〕

圆锥的底面积是10,高是9,体积是〔〕

〔二〕算一算

学生独立计算,集体订正.

说说解题方法

三、全课小结

通过本节的学习,你学到了什么知识?〔从两个方面谈:圆锥体体积公式的推导方法和公式的应用〕

四、课后反思

第二课时

教学目标:

1、进一步掌握圆柱和圆锥体积的计算方法,能正确熟练地运用公式计算圆锥的体积。

2、进一步培养学生运用所学知识解决实际问题的能力和动手操作的能力。

3、进一步熟悉圆锥的体积计算

教学难点:

圆锥的体积计算

教学重点:

圆锥的体积计算

教学过程:

一、根本练习

圆锥体积计算公式

相邻两个面积单位之间的进率是多少?

相邻两个体积单位之间的进率是多少?

二、实际应用

占地面积是求得什么?

三、实践活动

四、课后反思

圆锥体积教学设计10

根本信息

课题圆锥的体积

作者及工作单位殷兴均达州市宣汉县南坝镇第二中心小学

教材分析

?圆锥的体积?是西师版义务教育课程标准实验教科书数学六年级下册的内容。本节课是在学习了圆柱的体积和认识了圆锥的特征的根底上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。

学情分析

六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。学习?圆锥体积?之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。但是我校是处于城镇边缘的农村学校,学生的根底较差,接受能力有限,对于本节的学习有一定的难度。

教学目标

1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。

3、体会数学与生活的密切联系,感受探究成功的快乐。

教学重点和难点

重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。

难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。

教学过程

教学环节

教师活动预设学生行为设计意图

一、复习准备

1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?

2、圆锥有什么特点?(同时出示幻灯)

3、在这个圆锥体中,几号线段是圆锥体的高。

4、引入:看来,同学们对于圆锥体的特征掌握得很好。你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。

2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。

3.学生手势出示

4.想

复习内容紧扣重点,由实物到图形,采用比照的方法,不断加深学生对形体的认识。

二、创设情境

出示等底等高的实心圆锥、实心圆柱和装有适量水的水槽〔标有刻度〕

引入新课〔板书课题〕激发学生兴趣,学生认真观察,跃跃欲试,都想争取参加实验。联系生活实际创设情境,引发学生的好奇心,激发学习兴趣。情境创设可以让学生感受到数学与生活实际密不可分,从而感受用数学能够解决实际问题的思想,激发学生学习数学的兴趣。

三、学习新课

1、猜测体积大小

实心圆锥和实心圆柱的体积有怎样的关系圆锥体积小于圆柱体积。

圆锥体积可能是圆柱体积的二分之一、三分之一。猜测关系,这个环节,共进行两次猜测,第一次是猜测体积大小。第二次是让学生凭借直觉大胆提出猜测,猜测圆锥的体积与圆柱体积的可能关系,同时在猜测中明确探索方向。学生可能猜测二分之一、三分之一等。在形成猜测后,再引导学生“实验验证〞自己的猜测。

2、理解等底等高

我们研准备一个圆柱体和一个圆锥体。你们比比看,这两个形体有什么相同的地方?

底面积相等,高也相等,用数学语言说就叫“等底等高〞。底面积相等,高也相等。为推导圆锥的体积计算公式打下根底

3、猜测关系、实验验证

同学们有说二分之一的,有说三分之一的,争是争不出结果的,得用实验来验证。

谁来汇报一下,你们组是怎样做实验的?

你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?分组做实验。

学生汇报

用等底等高的圆锥和圆柱,通过实验,让学生研究出等底等高的圆柱与圆锥之间的关系。再利用课件演示,帮助学生回忆自己的实验过程,加深学生对实验过程的体验。

4、总结公式

我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

V锥=V柱×1/3=sh×1/3

“sh〞表示什么?乘1/3呢?学生尝试总结圆锥的体积计算公式。通过实验总结结论,培养学生的归纳概括能力和语言表达能力。

5、全面验证

是不是任何一个圆锥体的体积都是任何一个圆柱体体积的1/3呢?

〔课件演示〕等底不等高、等高不等底

为什么你们做实验的圆锥体积等于圆柱体积的1/3呢?

现在我们得到的这个结论就更完整了。(指名反复表达公式。)

今后我们求圆锥体体积就用这种方法来计算。(因为是等底等高的圆柱体和圆锥体。)

在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。注重强调了等底等高圆锥和圆柱的体积才有这样的倍数关系,突出了重点。

6、圆锥体积公式的实际应用

〔1〕例:一个圆锥形的物体,底面积是11平方厘米,高是9厘米.它的体积是多少立方厘米?

〔2〕一个圆锥的底面直径是20厘米,高是6厘米,它的体积是多少?〔只列式不计算〕

〔3〕一个圆柱与一个圆锥体积相等,底面积也相等。圆柱高15厘米,圆锥高多少厘米?

〔4〕一个圆柱与一个圆锥体积相等,高也相等。圆锥的底面积是圆柱底面积的几倍?

圆锥体积教学设计11

教学内容:人教版九年义务教育小学数学教科书第十二册。

整体感知:这局部知识是学生在有了圆锥的认识和圆柱体积相关知识的根底上进行教学的。在知识与技能上,通过对圆锥体的研究,经历并理解圆锥体积公式的推导过程,会计算圆锥的体积;在方法的选择上,抓住新旧知识间的联系,通过猜测、课件演示、实践操作,从经历和体验中验证,让学生在自主探索与合作交流过程中真正理解和掌握根本的数学知识与技能,数学思想和方法,使学生真正成为学习的主人。

教学目的:

1、使学生掌握圆锥体积的计算公式,会用公式计算圆锥的体积,解决日常生活中有关简单的实际问题。

2、让学生经历猜测——验证,合作——探究的教学过程,理解圆锥体积公式的推导过程,体验转化的思想。

3、培养学生动手操作、观察、分析、推理能力,开展空间观念,渗透事物是普遍联系的唯物辩证思想。

[点评:知识与技能目标的设计全面、具体、有针对性。不但使学生掌握圆锥体积的计算公式,而且培养了学生运用圆锥体积公式解决生活中的实际问题的能力,使学生体会到数学与生活的密切联系注。并注重对学生“猜测——————验证〞、“合作——————探究〞等学习方式的培养及“转化〞数学思想方法的渗透;同时关注学生空间观念的培养及唯物辩证思想的渗透。

教学重点:掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。

教学难点:理解圆锥体积公式的推导过程及解决生活中的实际问题。

教学过程:

一、创设情境导入新课。

1、出示圆锥体容器组织学生谈一谈通过前几课的学习,你对圆锥有哪些了解?然后想一想关于圆锥你还有哪些问题?

2、引导学生自己想方法用多种方法来求这个圆锥体容器的体积,有困难的同学可以同桌交流,共同研究。〔组织学生先独立思考,然后同桌讨论交流,最后汇报自己的想法。〕

3、教师出示一个圆锥体的木块引导学生明确前面所想的方法太麻繁、不实用。并鼓励学生研究出一种简便快捷的方法来求圆锥的体积。

[点评:本环节通过一系列的问题情境,激发学生学习新知识的兴趣。首先让学生结合前面所学的知识来谈谈自己对圆锥的认识,进而提出自己对圆锥还存在的问题。这样不仅稳固了前面所学的知识,而且培养了学生的问题意识。然后放手让学生自己想方法用不同的方法求它的体积,拓展了学生的思维,培养了学生的创新能力,真正表达了学生的主体地位。最后让学生从具体的问题中体会到自己方法的太麻繁、不实用,从而让学生有思索出一种更简洁、广泛的求圆锥体积的方法需要。]

二、经历体验,探究新知

〔一〕渗透转化,帮助猜测

1、先组织学生自由畅谈圆锥的体积可能会与谁有关〔圆柱〕。先给学生独立思考的时间,然后汇报。汇报时要阐述自己的理由。教师引导学生回忆圆柱体积公式的推导过程。

2、组织学生拿出准备好的圆柱体铅笔和转笔刀来削铅笔,同时教师也随着学生一起来做。教师做好后要及时巡视,直到学生将铅笔削得尖尖的为止。然后引导学生认真观察削好后的铅笔是什么形体的?〔此时的铅笔是由圆柱和圆锥两局部组成的〕并组织学生通过观察比拟、讨论交流得出两种形体的底与高及体积之间的关系。〔削好后的圆柱与圆锥等底不等高,体积无关。〕此时,教师要参与到小组讨论中,及时引导学生发现削好后的圆锥的体积与未削之前的这局部圆柱等底等高,并且体积也有关。组织学生自己的话来总结。最后,将自己的发现进行汇报。

3、课件出示:等底等高的圆柱和圆锥。组织学生认真观察,大胆猜测他们体积之间可能存在怎样的关系后说说理由。教师此时要引导学生展开想象的翅膀大胆去猜测……

[点评:本环节教师先引导学生回忆圆柱体积的推导过程,向学生渗透“转化〞的思想。使学生感受到新知也可通过“转化〞的方法变成已学过的知识来解决。然后留给学生充分的时间亲自动手去削铅笔,感受到圆锥是怎样转化成圆柱的。通过观察比拟、讨论交流一步一步得出圆锥的体积和它等底等高的圆柱有关。同时运用学生已有的知识和经验让学生进行猜测它们之间有怎样的关系,开展了学生的想象空间,培养了学生的创新思维。]

〔二〕小组合作,实验验证。

1、教师发给每组学生一个准备好的等底等高的圆柱和圆锥、沙了,组织学生拿出等底等高的圆柱和圆锥进行实验。实验前小组成员进行组内分工,有的进行操作,有的记录……实验中教师要及时巡视指导并参与到小组实验中去及时了解学生实验的进展情况。并指导帮助学生顺利完成实验。

2、实验后组内成员进行交流。交流的过程中,要引导学生注重倾听别人的想法,并说出自己不同的见解。

3、首先各小组派代表进行汇报,其它小组可以补充。然后全班进行交流实验结果:得出等底等高的圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥体积的3倍。由圆柱体的体积公式推导出圆锥的体积公式。预设板书如下:

概括板书:

等底到高

V圆柱=ShV圆锥=1/3sh

4、深化公式。组织学生讨论给出不同的条件求圆锥的体积,如:半径、直径、周长。预设板书如下:

V=1/3πr2hV=1/3〔c/2π〕2hV=1/3〔d/2〕2h

5、教师组织学生独立完成书中例题后集体订正。

[点评:俗话说:“实践是检验真理的唯一标准。〞学生在前面猜测的根底上通过小组合作动手实验、具体操作,验证得出等底等高的圆锥与圆柱体积间的关系,使自己的猜测在这里得到了验证。这一过程的设计潜移默化地向学生渗透了“猜测——————验证〞这一完整的学习数学的方法。从而也培养了学生合作的意识、开展了学生的思维、培养了学生的创新意识和实践能力。最后从等底等高的圆柱与圆锥体积间的关系及圆柱的体积公式中,得出了圆锥体的体积公式。这个过程,让学生充分经历了知识的形成过程,表达了“动态生成〞,为抽象的理论提供了感性材料。]

〔三〕看书质疑:你还有哪些不懂的问题或不同的见解可以提出来我们共同研究。

[点评:伟大的科学家爱因斯坦曾说过:“提出一个问题比解决一个问题更重要。〞学生经历了问题的探索过程后,再将他们引加到书本上。这时学生的可能提的更有价值、有深度。]

三、稳固新知,拓展应用。

1、判断并说明理由

〔1〕圆柱体积是圆锥体积的3倍〔〕

〔2〕一个圆锥的高不变,底面积越大,体积越大。〔〕

〔3〕一个圆锥体的高是3分米,底面积10平方分米,它的体积是30立方分米。〔〕

组织学生打手势判断后说明理由,并强调圆锥的体积是圆柱体积的1/3是以等底等高为前提的。

2、求以下圆锥的体积〔口答,只列式,不计算〕

s=4平方米,h=2平方米

r=2分米,h=3分米

d=6厘米,h=5厘米

组织学生根据圆锥体积公式解答。

3、实践与应用:

学校操场有一堆圆锥沙子,求它的体积需要什么条件,你有什么好方法?

组织学生进行讨论,求圆锥体的沙堆的体积需要什么条件后并谈如何来测量这些所需条件,有条件的可领学生实地操作一下。再求体积。

[点评:练习设计由浅入深,由例题到实践应用,层次鲜明,并注重培养学生解决实际问题的能力,到达学以致用的目的.]

四、课后总结,感情升华。

这节课你有什么收获?你是怎样获得的?

[不仅关注学生知识技能的掌握,更注重数学方法的提炼及学生的情感、态度、学习数学的信心等,促进了学生的可持续开展。]

[总评:

1、钻研教材,创造性地使用教材。

教师在充分了解学生、把握课程标准、教学目标、教材编写意图的根底上,根据学生生活实际和学习实际,有目的地对教材内容进行改编和加工。如学生削铅笔这一活动的设计,学生从“削〞的过程中体验到圆柱与圆锥的联系;再如动手实验这一环节的设计,使学生在观察、比拟、动手操作,合作交流中理解掌握新知。创造性地融入一些生活素材,加强了数学与生活的密切联系。

2、注重数学思想方法的渗透。

数学思想方法是数学知识的精髓,又是知识转化为能力的桥梁。新课伊始,便让学生自己想方法求圆锥的体积,此时学生便想方法将圆锥体的容器装满水后倒入圆柱或长〔正〕方体的容器中,从而求出圆锥的体积。这一过程潜移默化地渗透“转化〞的数学思想方法。再如:让学生将圆柱体的铅笔削成圆锥体的这一活动,也同样渗透了转化的思想方法。

3、猜测—————验证、合作交流等学习方式表达了学生的主体地位。

本节课在探究新知的过程中,借助削铅笔这一学生熟知的活动帮助学生猜测圆锥的体积可能会与谁有关,再进一步猜测又会有怎样的关系。紧接着让学生在具体的实验操作中去验证自己的猜测是否正确,从而得出结论。整个过程是在教师的引导下,学生自主探索,发现问题,在合作交流中解决问题。教师留出了充足的时间,让学生去思考、讨论、探索、争辩和交流。真正表达了人人学有价值的数学,不同的人在数学上得到不同的开展

圆锥体积教学设计12

一、教学内容:

六年制小学数学教材第十二册第25-26页

二、教学目标:

1、知识技能目标:

◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;

◆使学生会应用公式计算圆锥的体积并解决一些实际问题。

2、思维能力目标:

◆提高学生实践操作、观察比拟、抽象概括及逻辑推断的能力,开展空间观念。

3、情感态度目标:

◆培养学生的合作意识和探究意识;

◆使学生获得成功的体验,体验数学与生活的联系。

三、教学重点、难点:

重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题

难点:探索圆锥体积方法和推导过程。

教学过程:

一、质疑引入

1圆锥有什么特征?指名学生答复。

2说一说圆柱体积的计算公式。

(1)s、h求v

(2)r、h求v

(3)d、h求v

3我们已经认识了圆锥又学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。

板书课题:圆锥的体积

二、新课

〔一〕教学圆锥体积的计算公式

1、师:请大家回忆一下,我们是怎样得到圆柱体积的计算公式的?

指名学生表达圆柱体积的计算公式的推导过程:〔学生:圆柱转化长方体-长方体的体积公式推导圆柱体公式〕

2、教师:那么圆锥的体积该怎样求呢?能不能也通过学过的图形来求呢?

先让学生讨论,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式

〈1〉学生独立操作

让两名学生到讲台上做实验其他学生观察,拿出等底等高的圆柱和圆锥各1个,比圆柱体积多的水。先在圆锥里装满水,然后倒入圆柱。看几次正好把圆柱装满?

〈2〉教师教具演示稳固学生的操作效果,cai课件演示

a屏幕上出示等底、等高

b等底、不等高

c等高、不等底

实验报告单

实验器材

实验结果

等底不等高的圆锥、圆柱

等高不等底的圆锥、圆柱

等底等高的圆锥、圆柱

〈3〉引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积等于和它等底等高圆柱体积的1/3(板书)

用字母表示圆锥的体积公式.v锥=1/3sh

做一做:

填空:

等底等高的圆锥和圆柱,圆柱的体积是圆锥的体积的〔〕,圆锥的体积是圆柱的体积的〔〕圆锥的体积是9立方分米,圆柱的体积是〔〕;如果圆柱的体积是12立方分米,那么圆锥的体积是〔〕。

〔二〕运用公式,尝试练习

1、要求圆锥的体积,必须知道哪两个条件?为什么要乘1/3?

试一试:

一个圆锥体,底面积是19平方米,高是12分米。这个圆锥的体积是多少??圆锥的体积?教学设计相关内容:第四单元圆全单元教案六下第一单元负数教材分析?圆锥的认识?说课?分数乘分数?教后反思?纳税?教案人教版第十一册教案百分数〔五〕折扣圆柱的外表积第三单元分数除法:分数除法的意义和整数除以分数查看更多>>小学六年级数学教案

2、思考:求圆锥的体积,还可能出现那些情况?

〔如果圆锥的高和底面半径如果圆锥的高和底面半径〔或直径、周长〕,怎样求圆锥的体积呢?〕

练一练

3、求下面的体积。〔只列式不计算〕

(1)底面半径是2厘米,高3厘米。

3.14×22×3

(2)底面直径是6分米,高6分米。

3.14×〔6÷2〕2×6

(3)底面周长是12.56厘米,高是6厘米

3.14×〔12.56÷6.28)2×6

2、求下面各圆锥的体积如图〔单位厘米〕

〔1〕底面直径是8分米,高9分米〔2〕底面半径3分米和高7分米

通过公式我们发现计算圆锥的体积所必须的条件可以是底面积和高

a、底面积和高

b、底面半径和高

c、底面直径和高

d、底面周长和高

三、稳固练习

1、判断:

⑴、圆锥的体积等于圆住体积的1/3。〔〕

⑵把一个圆柱切成一个圆锥,这个圆锥的体积是圆柱体积的1/3〔〕

⑶圆柱的体积比和它等底等高圆锥的体积大2倍。〔〕

⑶一个圆柱与一个圆锥的底面积和体积相等,那么圆锥的高是圆柱高的

2、填空

⑴一个圆锥与一个圆柱等底等高,圆锥的体积是18立方米,圆柱的体积是〔〕。

⑵一个圆锥与一个圆柱等底等体积,圆柱的高是12厘米,圆锥的高是〔〕。

⑶一个圆锥与一个圆柱等高等体积,圆柱的底面积是314平方米,圆锥的底面积是〔〕。

3、拓展练习

工地上有一些沙子,堆起来近似于一个圆锥,通过测量它的直径是4厘米高是1.2厘米,这堆沙子大约多少立方米?(得数保存两位小数)

〔引导学生说出怎样测量沙堆的底面的周长、直径、和高。〕

用两根竹竿平行地放在沙堆两侧,测得两根竹竿间的距离,就是直径。将一根竹竿过沙堆的顶部水平位置,另一根竹竿竖直与水平竹竿成直角即可量得高。

圆锥体积教学设计13

教学内容:

九年义务教育六年制小学数学第十二册第48-50页。

教学目的:

1.使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

2.培养学生初步的空间观念、逻辑思维能力、动手操作能力。

3.向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

教学重点:

圆锥的体积计算。

教学难点:

圆锥的体积公式推导。

教学关键:

圆锥的体积是与它等底等高的圆柱体积的二分之一。

教具准备:

投影仪、小黑板、等底等高的圆柱和圆锥空心实物各一个。圆台、棱台实物各一个。

学具准备:

等底等高的圆柱和圆锥空心实物各一个

教学过程:

一、复习

1.圆柱的体积公式是什么?

2.底面积是19平方厘米,高是20厘米,求圆柱的体积是多少立方厘米?

[说明:圆锥的体积,是与它等底等高的圆柱体积的1/3。因此,先复习圆柱的体积计算方法,抓住所学知识间的内在联系,为学习圆锥的体积计算方法作了很好的铺垫。]

师:刚刚我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

板书:圆锥的体积

[说明:设疑激趣,激发学生探求新知识的欲望。l

二、新课教学

师:请大家把书翻到第48页,想一想:圆锥的底面是什么形状的?什么是圆锥的高?(生看书)

投影出示以下图:

师:圆锥的底面是什么形状?

生:圆锥的底面是圆形的。

师:对。什么是圆锥的高呢?

生:从圆锥的顶点到底面圆心的距离是圆锥的高。

师:你能上来指出这个圆锥的高吗?

师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

师演示:将刚刚出示的圆锥图上的高往外移,标上字母h,如下图:

师:有人认为,(指母线)这条就是圆锥的高,你们说对吗?为什么?

生:我认为不对,因为高是指从圆锥的顶点到底面圆心的距离,它不在圆心上,所以不是圆锥的高。

师:说得很好。在我们日常生活中,你们看到过哪些物体是圆锥形状的?(略)

师:对。在生活中有很多圆锥形的物体。(出示实物图)如:沙堆、粮堆、铅锤,还有圆柱型铅笔用卷刀卷过的局部等等。谁上来指一指这支铅笔圆锥型局部?(略)

师:对圆锥我们已经有了一个初步的认识。现在,我们一起来看一组圈,请你判断这些图中哪些是圆锥?哪些不是?为什么?

投影出示以下图形:

生:我认为②、③、④三个图是圆锥,①、⑤两个图不是。

师:第②、③两个图与第④个图并不一样,为什么说它们也是圆锥呢?

生:我想第②个图是倒放的圆锥,第③个图是斜放的圆锥。

师:说得有道理。你能不能将这个圆锥摆正。

(一名学生到前面旋转投影片,将圆锥图形一一摆正)

师:拿出实物模型(圆台、棱台)。说:大家看,①、⑤两个图其实就是这两个物体,它们究竟叫什么呢?等你们以后学了更多的知识就知道了。

[说明:圆锥的认识,教师是让学生通过看书自学去获得的。教师通过不断设疑,层层深入,帮助学生对书上内容逐步深化;然后,以生活中的圆锥形物体,进一步帮助学生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论