版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter12LimitedcognitionandorganisationGeorgeHendrikseEconomicsandManagementofOrganisations:Co-ordination,MotivationandStrategy
Chapter12EconomicsandManageFieldsBehaviouralaccountingbehaviouralfinanceEconomicpsychology/consumerbehaviourOrganisationalbehaviourStrategicdecisionmakingFieldsBehaviouralaccountingFigureVI.1:Positioningofboundedrationalityapproaches
Behaviouralhypothesis
Opportunistic
Selfinterested
Idealistic
Complete
Rationality
Limited
X
Procedural
X
X
X
FigureVI.1:PositioningofboFirmfromanevolutionaryperspective
DeelV:TreeFirmfromanevolutionarypersMakingmistakes
Forgetting
LimitedreasoningcapabilitiesMakingmistakes
Forgetting
LimDegreeofrationalityRatioofthecognitivecapacitiesofthedecisionmakerandthecomplexityoftheproblem.DegreeofrationalityRatioofTypesofrationalityComplete:ratiois1Bounded:ratiobetween0and1Procedural:ratiois(almost)0TypesofrationalityComplete:Ifthedegreeofrationalityissmallerthan1,thentherewillbeabiasinbehaviour(comparedtothecompleterationalitycase).IfthedegreeofrationalityiIncreaseratiobyincreasingcognitivecapacities,cationdecreasingthecomplexityoftheproblem,e.g.bysplittinguptheproblem,usingcomputersIncreaseratiobyTwotypesofboundedrationalityDeductiveInductiveTwotypesofboundedrationaliPartitioningPartitioningDeductiveboundedrationalityHowtooptimallyallocatealimitednumberofcognitiveunitsinacomplexproblem?DeductiveboundedrationalityHHowtomake(deductive)boundedrationalityoperational?Numberofpartitionsofthesetofpossibleevents/states.Howtomake(deductive)boundeCognitivecapacitiesofapersonThecognitivecapacitiesofapersonarethenumberofpartitionsapersonisabletomakeinresponsetoaparticularproblem.CognitivecapacitiesofapersComplexityofaproblemThecomplexityofaproblemisthenumberofpartitionsthatisneededtodistinguishallaspects/states/eventsofaproblem.ComplexityofaproblemThecomExample:
ColourrecognitionproblemPossiblestates: R:Red G:Green W:White D:DarkExample:
ColourrecognitionpComplexityofthecolourrecognitionproblemR|G|W|DConclusion:3partitionsimpliescomplexity3.ComplexityofthecolourrecogFigure12.1:ColourrecognitioncapacitiesofdifferentdecisionmakersDecisionmaker
Partitioningofsetofstates
Degreeofrationality
Human
{(R),(G),(W),(D)}
3/3=1
Pussycat
{(R,G),(W),(D)}
2/3
Mole
{(R,G,W),(D)}
1/3
Spoon
{(R,G,W,D)}
0
Figure12.1:ColourrecognitioExample:
OrganisationalstructureFunctionalDivisionalExample:
OrganisationalstrucFunctionalstructure
Product1productionProduct2productionProduct1salesProduct2salesProductionSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOFunctionalstructure
Product1Divisionalstructure
Product1productionProduct1salesProduct2productionProduct2salesProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEODivisionalstructure
Product1Informationcompressionfromemployeestothebossisnecessaryduetolimitedcognitivecapacitiesoftheboss.
However,informationcompressionisnotneutral.Everystructureofinformationchannelsleadsinevitablytoacertainbiasintheprovisionofinformation.
InformationcompressionfromeExampleOrganisationconsistsoftwodivisionsEachdivisionconsistsoftwomanagersCEOonlyusesadviceofeachdivisionDivisionsbasetheiradviceoninformationofthelocalmanagersExampleOrganisationconsistsoInformationonlocalmanagersProductionmanager1(2)indicatesalways(never)thattherearepossibilitiesforcostreductionsMarketingmanager1(2)isalwaysoptimistic(pessimistic)regardingadditionalsalesinthefutureInformationonlocalmanagersPInformationaggregationAdivisionreportspositivelyonlywhenbothlocalmanagersarepositiveAdivisionreportsdoubtfulwhenthereportsofthelocalmanagersaremixedAdivisionreportsnegativelyonlywhenbothlocalmanagersarenegativeInformationaggregationAdivisInferencesinafunctionalstructure
Product1productionProduct2productionProduct1salesProduct2salesYesNoYesNoProductionAmbiguousAmbiguousSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOInferencesinafunctionalstrCEOTheCEOinafunctionalstructuredecidestodonothing.CEOTheCEOinafunctionalstrInferencesinadivisionalstructure
Product1productionProduct1salesProduct2productionProduct2salesYesYesNoNoProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEOYesNoInferencesinadivisionalstrCEOTheCEOinadivisionalstructuredecidestoallocateasmanymeansaspossibletodivision1inthefuture.CEOTheCEOinadivisionalstrConclusionThestructureofthelearningenvironmentseemstobeatleastasimportantasthemeaningofthings.ConclusionThestructureoftheDifferentbiasesAfunctionalstructurecreatesanaggregationbiastowardsthegenerationofproduct-relateddata.Adivisionalstructuremeansanaggregationbiasregardingthegenerationoffunctionallyrelateddata.DifferentbiasesAfunctionalsIfthedegreeofrationalityissmallerthan1,theneachpartitioningentailsacertainbias.IfthedegreeofrationalityiComplexityand
self-organisationComplexityand
self-organisatInductiveboundedrationalityDecisionsarebasedonlimited,localinformation.InductiveboundedrationalityDMissinginformationisdealtwithbymakinganalogiesusingheuristicrulesofthumbconstructingplausible,simplerrepresentationsoftheproblemMissinginformationisdealtwIngredientsoftheorylearningbasedonfeedbackadjustrulesofthumbbasedonnaturalselectionIngredientsoftheorylearningHowdoyoumake(inductive)boundedrationalityoperational?Specifysimplebehaviouralrules.Howdoyoumake(inductive)boAtransitionrulespecifiesthenextstateofacellbyitscurrentstateandthelocalenvironment.AtransitionrulespecifiesthResearchquestionWhichsimplerulesdrivebehaviour?ResearchquestionWhichsimpleHowtoproceed?Trialanderrorbycomputersimulations.Howtoproceed?TrialanderrorHowdoyoumodelalocalenvironment?HowdoyoumodelalocalenvirFigure12.5:(a)vonNeumanenvironment,(b)Mooreenvironment
Figure12.5:(a)vonNeumanenExample:
SegregationGhettosExample:
SegregationGhettosSuppose
0:blue
X:greenSuppose
0:blue
X:greenFigure12.6:Startingposition
Figure12.6:StartingpositionTransitionrulesDonotmovewhenatleasthalfofthepersonsintheMoore-environmentisofthesamecolur.MovetothemostcloselocationwhereatleasthalfofthepersonsintheMoore-environmentisofthesamecolourwhenlessthanhalfofthepersonsinthecurrentMoore-environmentisofthesamecolour.TransitionrulesDonotmovewhFigure12.7:Stationarysituation
Figure12.7:StationarysituatExample:
FinanceInductive,boundedrationaldecisionmakersExample:
FinanceInductive,boTransitionrule/buy-saleofcomputerprogramPutmore(less)inriskystockswhenreturnswerepositive(negative)intherecentpast.Transitionrule/buy-saleofUnderlyingvaluePriceValuetImplicationNotanefficientmarketUnderlyingvaluePricetImplicatArchitecturechoice Vacancy Annualreportaccountant Lawinparliament IssueinUnitedNations Scientificjournal Possibilitiesofappeal Innovationprojectinfirm MarketsystemArchitecturechoice VacancyArchitectureRuleforaggregatinglocaldecisionsintoanorganisationdecision.ArchitectureRuleforaggregatiFigure12.12:Firmasacollectionofbureaus
Collectionofbureaus
Figure12.12:FirmasacollecTwoarchitecturesHierarchyPolyarchyTwoarchitecturesHierarchyHierarchyOrganisationonlyacceptsaprojectwhennobodyrejectsit.HierarchyOrganisationonlyaccFigure12.14:Hierarchy
Project
Office1
Office2
Accepted
no
1-p
no
1-p
Rejected
Rejected
p
yes
yes
p
Figure12.14:HierarchyProjeDecision-makingauthorityisconcentratedLocal/IndividualdecisionmakershavevetopowerAcceptancerequiresunanimityPropertiesDecision-makingauthorityiscPolyarchy Organisationonlyrejectsaprojectwheneverybodyrejectsit.Polyarchy OrganisationonlyreDecision-makingauthorityisnotconcentratedEverydecisionmakerhasthepowertoacceptaprojectPropertiesDecision-makingauthorityisnFigure12.15:Polyarchy
Project
Office1
Office2
Accept
no
1-p
no
1-p
Reject
p
yes
yes
p
Accept
Figure12.15:PolyarchyProjeConclusionApolyarchyisgoodatacceptingprojects,whereashierarchiesaregoodatrejectingprojects.ConclusionApolyarchyisgoodWhichorganisationalchoiceminimiseserrorsofjudgement?WhichorganisationalchoicemiTherearetwotypesofmistakes:TypeIerrorsTypeIIerrorsTherearetwotypesofmistakeFigure12.13:type-Iversustype-IIerrors
•
accept
reject
accept
•
reject
good
project
bad
project
•
desirable
decision
type-
I
error
type-
II
error
desirable
decision
Figure12.13:type-IversustyChooseapolyarchywhentype-Ierrorsarerelativelyexpensive.Ahierarchyisdesirablewhentype-IIerrorsarerelativelyexpensive.Results
Chooseapolyarchywhentype-IEvolutionaryapproachesEvolutionaryapproachesEvolutionarypsychologyClaimsregardingthecognitivecapacitiesofpeoplehavetobebasedinevolutionarybiology.EvolutionarypsychologyClaimsResult1:
GlobalrationalityItisunlikelythatglobalrationalityemergesoutofanevolutionaryprocess.Result1:
GlobalrationalityIReason1:Adaptiveoroptimalbehaviourdependstoalargeextentonthespecificsituation.Reason2:Addingmoredimensionspreventsthatevenlimitedgeneralsystemswillfunctionwell.Thisisduetocombinatorialexplosion.Reason1:Thisresultsin:modularityhierarchyparallellisationThisresultsin:Reason3:Generalsystemsdonotperformwellinspecificsituationsbecausecrucialdetailsarenottakenintoaccount.Reason3:Result2:
formfollowsfunctionThepropertiesofanevolvedsystem/mechanism/formreflectthestructureoftheproblemthathastobedealtwith.Thenatureoftheproblemdirectsthereforethekindofsolutionthatisformulated.Result2:
formfollowsfunctiExample1:
Structurefollowsstrategy(Chandler,1962)Example1:
StructurefollowsNaturalselectionresultsinmechanismsgearedtowardsusinginformationintheformitispresented.NaturalselectionresultsinmChapter12LimitedcognitionandorganisationGeorgeHendrikseEconomicsandManagementofOrganisations:Co-ordination,MotivationandStrategy
Chapter12EconomicsandManageFieldsBehaviouralaccountingbehaviouralfinanceEconomicpsychology/consumerbehaviourOrganisationalbehaviourStrategicdecisionmakingFieldsBehaviouralaccountingFigureVI.1:Positioningofboundedrationalityapproaches
Behaviouralhypothesis
Opportunistic
Selfinterested
Idealistic
Complete
Rationality
Limited
X
Procedural
X
X
X
FigureVI.1:PositioningofboFirmfromanevolutionaryperspective
DeelV:TreeFirmfromanevolutionarypersMakingmistakes
Forgetting
LimitedreasoningcapabilitiesMakingmistakes
Forgetting
LimDegreeofrationalityRatioofthecognitivecapacitiesofthedecisionmakerandthecomplexityoftheproblem.DegreeofrationalityRatioofTypesofrationalityComplete:ratiois1Bounded:ratiobetween0and1Procedural:ratiois(almost)0TypesofrationalityComplete:Ifthedegreeofrationalityissmallerthan1,thentherewillbeabiasinbehaviour(comparedtothecompleterationalitycase).IfthedegreeofrationalityiIncreaseratiobyincreasingcognitivecapacities,cationdecreasingthecomplexityoftheproblem,e.g.bysplittinguptheproblem,usingcomputersIncreaseratiobyTwotypesofboundedrationalityDeductiveInductiveTwotypesofboundedrationaliPartitioningPartitioningDeductiveboundedrationalityHowtooptimallyallocatealimitednumberofcognitiveunitsinacomplexproblem?DeductiveboundedrationalityHHowtomake(deductive)boundedrationalityoperational?Numberofpartitionsofthesetofpossibleevents/states.Howtomake(deductive)boundeCognitivecapacitiesofapersonThecognitivecapacitiesofapersonarethenumberofpartitionsapersonisabletomakeinresponsetoaparticularproblem.CognitivecapacitiesofapersComplexityofaproblemThecomplexityofaproblemisthenumberofpartitionsthatisneededtodistinguishallaspects/states/eventsofaproblem.ComplexityofaproblemThecomExample:
ColourrecognitionproblemPossiblestates: R:Red G:Green W:White D:DarkExample:
ColourrecognitionpComplexityofthecolourrecognitionproblemR|G|W|DConclusion:3partitionsimpliescomplexity3.ComplexityofthecolourrecogFigure12.1:ColourrecognitioncapacitiesofdifferentdecisionmakersDecisionmaker
Partitioningofsetofstates
Degreeofrationality
Human
{(R),(G),(W),(D)}
3/3=1
Pussycat
{(R,G),(W),(D)}
2/3
Mole
{(R,G,W),(D)}
1/3
Spoon
{(R,G,W,D)}
0
Figure12.1:ColourrecognitioExample:
OrganisationalstructureFunctionalDivisionalExample:
OrganisationalstrucFunctionalstructure
Product1productionProduct2productionProduct1salesProduct2salesProductionSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOFunctionalstructure
Product1Divisionalstructure
Product1productionProduct1salesProduct2productionProduct2salesProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEODivisionalstructure
Product1Informationcompressionfromemployeestothebossisnecessaryduetolimitedcognitivecapacitiesoftheboss.
However,informationcompressionisnotneutral.Everystructureofinformationchannelsleadsinevitablytoacertainbiasintheprovisionofinformation.
InformationcompressionfromeExampleOrganisationconsistsoftwodivisionsEachdivisionconsistsoftwomanagersCEOonlyusesadviceofeachdivisionDivisionsbasetheiradviceoninformationofthelocalmanagersExampleOrganisationconsistsoInformationonlocalmanagersProductionmanager1(2)indicatesalways(never)thattherearepossibilitiesforcostreductionsMarketingmanager1(2)isalwaysoptimistic(pessimistic)regardingadditionalsalesinthefutureInformationonlocalmanagersPInformationaggregationAdivisionreportspositivelyonlywhenbothlocalmanagersarepositiveAdivisionreportsdoubtfulwhenthereportsofthelocalmanagersaremixedAdivisionreportsnegativelyonlywhenbothlocalmanagersarenegativeInformationaggregationAdivisInferencesinafunctionalstructure
Product1productionProduct2productionProduct1salesProduct2salesYesNoYesNoProductionAmbiguousAmbiguousSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOInferencesinafunctionalstrCEOTheCEOinafunctionalstructuredecidestodonothing.CEOTheCEOinafunctionalstrInferencesinadivisionalstructure
Product1productionProduct1salesProduct2productionProduct2salesYesYesNoNoProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEOYesNoInferencesinadivisionalstrCEOTheCEOinadivisionalstructuredecidestoallocateasmanymeansaspossibletodivision1inthefuture.CEOTheCEOinadivisionalstrConclusionThestructureofthelearningenvironmentseemstobeatleastasimportantasthemeaningofthings.ConclusionThestructureoftheDifferentbiasesAfunctionalstructurecreatesanaggregationbiastowardsthegenerationofproduct-relateddata.Adivisionalstructuremeansanaggregationbiasregardingthegenerationoffunctionallyrelateddata.DifferentbiasesAfunctionalsIfthedegreeofrationalityissmallerthan1,theneachpartitioningentailsacertainbias.IfthedegreeofrationalityiComplexityand
self-organisationComplexityand
self-organisatInductiveboundedrationalityDecisionsarebasedonlimited,localinformation.InductiveboundedrationalityDMissinginformationisdealtwithbymakinganalogiesusingheuristicrulesofthumbconstructingplausible,simplerrepresentationsoftheproblemMissinginformationisdealtwIngredientsoftheorylearningbasedonfeedbackadjustrulesofthumbbasedonnaturalselectionIngredientsoftheorylearningHowdoyoumake(inductive)boundedrationalityoperational?Specifysimplebehaviouralrules.Howdoyoumake(inductive)boAtransitionrulespecifiesthenextstateofacellbyitscurrentstateandthelocalenvironment.AtransitionrulespecifiesthResearchquestionWhichsimplerulesdrivebehaviour?ResearchquestionWhichsimpleHowtoproceed?Trialanderrorbycomputersimulations.Howtoproceed?TrialanderrorHowdoyoumodelalocalenvironment?HowdoyoumodelalocalenvirFigure12.5:(a)vonNeumanenvironment,(b)Mooreenvironment
Figure12.5:(a)vonNeumanenExample:
SegregationGhettosExample:
SegregationGhettosSuppose
0:blue
X:greenSuppose
0:blue
X:greenFigure12.6:Startingposition
Figure12.6:StartingpositionTransitionrulesDonotmovewhenatleasthalfofthepersonsintheMoore-environmentisofthesamecolur.MovetothemostcloselocationwhereatleasthalfofthepersonsintheMoore-environmentisofthesamecolourwhenlessthanhalfofthepersonsinthecurrentMoore-environmentisofthesamecolour.TransitionrulesDonotmovewhFigure12.7:Stationarysituation
Figure12.7:StationarysituatExample:
FinanceInductive,boundedrationaldecisionmakersExample:
FinanceInductive,boTransitionrule/buy-saleofcomputerprogramPutmore(less)inriskystockswhenreturnswerepositive(negative)intherecentpast.Transitionrule/buy-saleofUnderlyingvaluePriceValuetImplicationNotanefficientmarketUnderlyingvaluePricetImplicatArchitecturechoice Vacancy Annualreportaccountant Lawinparliament IssueinUnitedNations Scientificjournal Possibilitiesofappeal Innovationprojectinfirm MarketsystemArchitecturechoice VacancyArchitectureRuleforaggregatinglocaldecisionsintoanorganisationdecision.ArchitectureRuleforaggregatiFigure12.12:Firmasacollectionofbureaus
Collectionofbureaus
Figure12.12:FirmasacollecTwoarchitecturesHierarchyPolyarchyTwoarchitecturesHierarchyHierarchyOrganisationonlyacceptsaprojectwhennobodyrejectsit.HierarchyOrganisationonlyaccFigure12.14:Hierarchy
Project
Office1
Office2
Accepted
no
1-p
no
1-p
Rejected
Rejected
p
yes
yes
p
Figure12.14:HierarchyProjeDecision-makingauthorityisconcentratedLocal/IndividualdecisionmakershavevetopowerAcceptancerequiresunanimityPropertiesDecision-makingauthorityiscPolyarchy Organisationonlyrejectsaprojectwheneverybodyrejectsit.Polyarchy OrganisationonlyreDecision-makingauthorityisnotconcentratedEverydecisionmakerhasthepow
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高一化学本章测评:专题有机化合物的获得与应用
- 2024.0927推文-Elisa文献解读
- 餐饮场所使用瓶装液化气燃气的安全检查事项
- 2024高中地理第五章交通运输布局及其影响第二节交通运输方式和布局变化的影响课时演练含解析新人教版必修2
- 2024高中生物专题3胚胎工程3胚胎工程的应用及前景达标训练含解析新人教版选修3
- 2024高中语文第三单元因声求气吟咏诗韵阁夜训练含解析新人教版选修中国古代诗歌散文欣赏
- 2024高考地理一轮复习第十章区域可持续发展第32讲湿地资源的开发与保护-以洞庭湖区为例教案湘教版
- 护士长2023年工作总结和2024年工作计划课件
- 应急保障措施
- 四年级语文上册第七单元第22课为中华之崛起而读书习题课件2新人教版
- 农业昆虫学实验5蔬菜害虫课件
- 大学研究生赴境内外高校学习课程学分认定管理办法
- 非标设计最强自动计算-压入力计算
- 银行客户经理个人履职总结银行客户经理个人工作总结
- 人教版七年级数学下册计算类专项训练卷【含答案】
- 化学元素周期表口诀化学元素周期表口诀
- 诗词接龙(飞花令)PPT
- 子宫内膜癌(课堂PPT)
- 澳大利亚公司法1-30
- 海上试油测试技术0327
- 中国地图标准版(可编辑颜色)
评论
0/150
提交评论