




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter12LimitedcognitionandorganisationGeorgeHendrikseEconomicsandManagementofOrganisations:Co-ordination,MotivationandStrategy
Chapter12EconomicsandManageFieldsBehaviouralaccountingbehaviouralfinanceEconomicpsychology/consumerbehaviourOrganisationalbehaviourStrategicdecisionmakingFieldsBehaviouralaccountingFigureVI.1:Positioningofboundedrationalityapproaches
Behaviouralhypothesis
Opportunistic
Selfinterested
Idealistic
Complete
Rationality
Limited
X
Procedural
X
X
X
FigureVI.1:PositioningofboFirmfromanevolutionaryperspective
DeelV:TreeFirmfromanevolutionarypersMakingmistakes
Forgetting
LimitedreasoningcapabilitiesMakingmistakes
Forgetting
LimDegreeofrationalityRatioofthecognitivecapacitiesofthedecisionmakerandthecomplexityoftheproblem.DegreeofrationalityRatioofTypesofrationalityComplete:ratiois1Bounded:ratiobetween0and1Procedural:ratiois(almost)0TypesofrationalityComplete:Ifthedegreeofrationalityissmallerthan1,thentherewillbeabiasinbehaviour(comparedtothecompleterationalitycase).IfthedegreeofrationalityiIncreaseratiobyincreasingcognitivecapacities,cationdecreasingthecomplexityoftheproblem,e.g.bysplittinguptheproblem,usingcomputersIncreaseratiobyTwotypesofboundedrationalityDeductiveInductiveTwotypesofboundedrationaliPartitioningPartitioningDeductiveboundedrationalityHowtooptimallyallocatealimitednumberofcognitiveunitsinacomplexproblem?DeductiveboundedrationalityHHowtomake(deductive)boundedrationalityoperational?Numberofpartitionsofthesetofpossibleevents/states.Howtomake(deductive)boundeCognitivecapacitiesofapersonThecognitivecapacitiesofapersonarethenumberofpartitionsapersonisabletomakeinresponsetoaparticularproblem.CognitivecapacitiesofapersComplexityofaproblemThecomplexityofaproblemisthenumberofpartitionsthatisneededtodistinguishallaspects/states/eventsofaproblem.ComplexityofaproblemThecomExample:
ColourrecognitionproblemPossiblestates: R:Red G:Green W:White D:DarkExample:
ColourrecognitionpComplexityofthecolourrecognitionproblemR|G|W|DConclusion:3partitionsimpliescomplexity3.ComplexityofthecolourrecogFigure12.1:ColourrecognitioncapacitiesofdifferentdecisionmakersDecisionmaker
Partitioningofsetofstates
Degreeofrationality
Human
{(R),(G),(W),(D)}
3/3=1
Pussycat
{(R,G),(W),(D)}
2/3
Mole
{(R,G,W),(D)}
1/3
Spoon
{(R,G,W,D)}
0
Figure12.1:ColourrecognitioExample:
OrganisationalstructureFunctionalDivisionalExample:
OrganisationalstrucFunctionalstructure
Product1productionProduct2productionProduct1salesProduct2salesProductionSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOFunctionalstructure
Product1Divisionalstructure
Product1productionProduct1salesProduct2productionProduct2salesProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEODivisionalstructure
Product1Informationcompressionfromemployeestothebossisnecessaryduetolimitedcognitivecapacitiesoftheboss.
However,informationcompressionisnotneutral.Everystructureofinformationchannelsleadsinevitablytoacertainbiasintheprovisionofinformation.
InformationcompressionfromeExampleOrganisationconsistsoftwodivisionsEachdivisionconsistsoftwomanagersCEOonlyusesadviceofeachdivisionDivisionsbasetheiradviceoninformationofthelocalmanagersExampleOrganisationconsistsoInformationonlocalmanagersProductionmanager1(2)indicatesalways(never)thattherearepossibilitiesforcostreductionsMarketingmanager1(2)isalwaysoptimistic(pessimistic)regardingadditionalsalesinthefutureInformationonlocalmanagersPInformationaggregationAdivisionreportspositivelyonlywhenbothlocalmanagersarepositiveAdivisionreportsdoubtfulwhenthereportsofthelocalmanagersaremixedAdivisionreportsnegativelyonlywhenbothlocalmanagersarenegativeInformationaggregationAdivisInferencesinafunctionalstructure
Product1productionProduct2productionProduct1salesProduct2salesYesNoYesNoProductionAmbiguousAmbiguousSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOInferencesinafunctionalstrCEOTheCEOinafunctionalstructuredecidestodonothing.CEOTheCEOinafunctionalstrInferencesinadivisionalstructure
Product1productionProduct1salesProduct2productionProduct2salesYesYesNoNoProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEOYesNoInferencesinadivisionalstrCEOTheCEOinadivisionalstructuredecidestoallocateasmanymeansaspossibletodivision1inthefuture.CEOTheCEOinadivisionalstrConclusionThestructureofthelearningenvironmentseemstobeatleastasimportantasthemeaningofthings.ConclusionThestructureoftheDifferentbiasesAfunctionalstructurecreatesanaggregationbiastowardsthegenerationofproduct-relateddata.Adivisionalstructuremeansanaggregationbiasregardingthegenerationoffunctionallyrelateddata.DifferentbiasesAfunctionalsIfthedegreeofrationalityissmallerthan1,theneachpartitioningentailsacertainbias.IfthedegreeofrationalityiComplexityand
self-organisationComplexityand
self-organisatInductiveboundedrationalityDecisionsarebasedonlimited,localinformation.InductiveboundedrationalityDMissinginformationisdealtwithbymakinganalogiesusingheuristicrulesofthumbconstructingplausible,simplerrepresentationsoftheproblemMissinginformationisdealtwIngredientsoftheorylearningbasedonfeedbackadjustrulesofthumbbasedonnaturalselectionIngredientsoftheorylearningHowdoyoumake(inductive)boundedrationalityoperational?Specifysimplebehaviouralrules.Howdoyoumake(inductive)boAtransitionrulespecifiesthenextstateofacellbyitscurrentstateandthelocalenvironment.AtransitionrulespecifiesthResearchquestionWhichsimplerulesdrivebehaviour?ResearchquestionWhichsimpleHowtoproceed?Trialanderrorbycomputersimulations.Howtoproceed?TrialanderrorHowdoyoumodelalocalenvironment?HowdoyoumodelalocalenvirFigure12.5:(a)vonNeumanenvironment,(b)Mooreenvironment
Figure12.5:(a)vonNeumanenExample:
SegregationGhettosExample:
SegregationGhettosSuppose
0:blue
X:greenSuppose
0:blue
X:greenFigure12.6:Startingposition
Figure12.6:StartingpositionTransitionrulesDonotmovewhenatleasthalfofthepersonsintheMoore-environmentisofthesamecolur.MovetothemostcloselocationwhereatleasthalfofthepersonsintheMoore-environmentisofthesamecolourwhenlessthanhalfofthepersonsinthecurrentMoore-environmentisofthesamecolour.TransitionrulesDonotmovewhFigure12.7:Stationarysituation
Figure12.7:StationarysituatExample:
FinanceInductive,boundedrationaldecisionmakersExample:
FinanceInductive,boTransitionrule/buy-saleofcomputerprogramPutmore(less)inriskystockswhenreturnswerepositive(negative)intherecentpast.Transitionrule/buy-saleofUnderlyingvaluePriceValuetImplicationNotanefficientmarketUnderlyingvaluePricetImplicatArchitecturechoice Vacancy Annualreportaccountant Lawinparliament IssueinUnitedNations Scientificjournal Possibilitiesofappeal Innovationprojectinfirm MarketsystemArchitecturechoice VacancyArchitectureRuleforaggregatinglocaldecisionsintoanorganisationdecision.ArchitectureRuleforaggregatiFigure12.12:Firmasacollectionofbureaus
Collectionofbureaus
Figure12.12:FirmasacollecTwoarchitecturesHierarchyPolyarchyTwoarchitecturesHierarchyHierarchyOrganisationonlyacceptsaprojectwhennobodyrejectsit.HierarchyOrganisationonlyaccFigure12.14:Hierarchy
Project
Office1
Office2
Accepted
no
1-p
no
1-p
Rejected
Rejected
p
yes
yes
p
Figure12.14:HierarchyProjeDecision-makingauthorityisconcentratedLocal/IndividualdecisionmakershavevetopowerAcceptancerequiresunanimityPropertiesDecision-makingauthorityiscPolyarchy Organisationonlyrejectsaprojectwheneverybodyrejectsit.Polyarchy OrganisationonlyreDecision-makingauthorityisnotconcentratedEverydecisionmakerhasthepowertoacceptaprojectPropertiesDecision-makingauthorityisnFigure12.15:Polyarchy
Project
Office1
Office2
Accept
no
1-p
no
1-p
Reject
p
yes
yes
p
Accept
Figure12.15:PolyarchyProjeConclusionApolyarchyisgoodatacceptingprojects,whereashierarchiesaregoodatrejectingprojects.ConclusionApolyarchyisgoodWhichorganisationalchoiceminimiseserrorsofjudgement?WhichorganisationalchoicemiTherearetwotypesofmistakes:TypeIerrorsTypeIIerrorsTherearetwotypesofmistakeFigure12.13:type-Iversustype-IIerrors
•
accept
reject
accept
•
reject
good
project
bad
project
•
desirable
decision
type-
I
error
type-
II
error
desirable
decision
Figure12.13:type-IversustyChooseapolyarchywhentype-Ierrorsarerelativelyexpensive.Ahierarchyisdesirablewhentype-IIerrorsarerelativelyexpensive.Results
Chooseapolyarchywhentype-IEvolutionaryapproachesEvolutionaryapproachesEvolutionarypsychologyClaimsregardingthecognitivecapacitiesofpeoplehavetobebasedinevolutionarybiology.EvolutionarypsychologyClaimsResult1:
GlobalrationalityItisunlikelythatglobalrationalityemergesoutofanevolutionaryprocess.Result1:
GlobalrationalityIReason1:Adaptiveoroptimalbehaviourdependstoalargeextentonthespecificsituation.Reason2:Addingmoredimensionspreventsthatevenlimitedgeneralsystemswillfunctionwell.Thisisduetocombinatorialexplosion.Reason1:Thisresultsin:modularityhierarchyparallellisationThisresultsin:Reason3:Generalsystemsdonotperformwellinspecificsituationsbecausecrucialdetailsarenottakenintoaccount.Reason3:Result2:
formfollowsfunctionThepropertiesofanevolvedsystem/mechanism/formreflectthestructureoftheproblemthathastobedealtwith.Thenatureoftheproblemdirectsthereforethekindofsolutionthatisformulated.Result2:
formfollowsfunctiExample1:
Structurefollowsstrategy(Chandler,1962)Example1:
StructurefollowsNaturalselectionresultsinmechanismsgearedtowardsusinginformationintheformitispresented.NaturalselectionresultsinmChapter12LimitedcognitionandorganisationGeorgeHendrikseEconomicsandManagementofOrganisations:Co-ordination,MotivationandStrategy
Chapter12EconomicsandManageFieldsBehaviouralaccountingbehaviouralfinanceEconomicpsychology/consumerbehaviourOrganisationalbehaviourStrategicdecisionmakingFieldsBehaviouralaccountingFigureVI.1:Positioningofboundedrationalityapproaches
Behaviouralhypothesis
Opportunistic
Selfinterested
Idealistic
Complete
Rationality
Limited
X
Procedural
X
X
X
FigureVI.1:PositioningofboFirmfromanevolutionaryperspective
DeelV:TreeFirmfromanevolutionarypersMakingmistakes
Forgetting
LimitedreasoningcapabilitiesMakingmistakes
Forgetting
LimDegreeofrationalityRatioofthecognitivecapacitiesofthedecisionmakerandthecomplexityoftheproblem.DegreeofrationalityRatioofTypesofrationalityComplete:ratiois1Bounded:ratiobetween0and1Procedural:ratiois(almost)0TypesofrationalityComplete:Ifthedegreeofrationalityissmallerthan1,thentherewillbeabiasinbehaviour(comparedtothecompleterationalitycase).IfthedegreeofrationalityiIncreaseratiobyincreasingcognitivecapacities,cationdecreasingthecomplexityoftheproblem,e.g.bysplittinguptheproblem,usingcomputersIncreaseratiobyTwotypesofboundedrationalityDeductiveInductiveTwotypesofboundedrationaliPartitioningPartitioningDeductiveboundedrationalityHowtooptimallyallocatealimitednumberofcognitiveunitsinacomplexproblem?DeductiveboundedrationalityHHowtomake(deductive)boundedrationalityoperational?Numberofpartitionsofthesetofpossibleevents/states.Howtomake(deductive)boundeCognitivecapacitiesofapersonThecognitivecapacitiesofapersonarethenumberofpartitionsapersonisabletomakeinresponsetoaparticularproblem.CognitivecapacitiesofapersComplexityofaproblemThecomplexityofaproblemisthenumberofpartitionsthatisneededtodistinguishallaspects/states/eventsofaproblem.ComplexityofaproblemThecomExample:
ColourrecognitionproblemPossiblestates: R:Red G:Green W:White D:DarkExample:
ColourrecognitionpComplexityofthecolourrecognitionproblemR|G|W|DConclusion:3partitionsimpliescomplexity3.ComplexityofthecolourrecogFigure12.1:ColourrecognitioncapacitiesofdifferentdecisionmakersDecisionmaker
Partitioningofsetofstates
Degreeofrationality
Human
{(R),(G),(W),(D)}
3/3=1
Pussycat
{(R,G),(W),(D)}
2/3
Mole
{(R,G,W),(D)}
1/3
Spoon
{(R,G,W,D)}
0
Figure12.1:ColourrecognitioExample:
OrganisationalstructureFunctionalDivisionalExample:
OrganisationalstrucFunctionalstructure
Product1productionProduct2productionProduct1salesProduct2salesProductionSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOFunctionalstructure
Product1Divisionalstructure
Product1productionProduct1salesProduct2productionProduct2salesProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEODivisionalstructure
Product1Informationcompressionfromemployeestothebossisnecessaryduetolimitedcognitivecapacitiesoftheboss.
However,informationcompressionisnotneutral.Everystructureofinformationchannelsleadsinevitablytoacertainbiasintheprovisionofinformation.
InformationcompressionfromeExampleOrganisationconsistsoftwodivisionsEachdivisionconsistsoftwomanagersCEOonlyusesadviceofeachdivisionDivisionsbasetheiradviceoninformationofthelocalmanagersExampleOrganisationconsistsoInformationonlocalmanagersProductionmanager1(2)indicatesalways(never)thattherearepossibilitiesforcostreductionsMarketingmanager1(2)isalwaysoptimistic(pessimistic)regardingadditionalsalesinthefutureInformationonlocalmanagersPInformationaggregationAdivisionreportspositivelyonlywhenbothlocalmanagersarepositiveAdivisionreportsdoubtfulwhenthereportsofthelocalmanagersaremixedAdivisionreportsnegativelyonlywhenbothlocalmanagersarenegativeInformationaggregationAdivisInferencesinafunctionalstructure
Product1productionProduct2productionProduct1salesProduct2salesYesNoYesNoProductionAmbiguousAmbiguousSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOInferencesinafunctionalstrCEOTheCEOinafunctionalstructuredecidestodonothing.CEOTheCEOinafunctionalstrInferencesinadivisionalstructure
Product1productionProduct1salesProduct2productionProduct2salesYesYesNoNoProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEOYesNoInferencesinadivisionalstrCEOTheCEOinadivisionalstructuredecidestoallocateasmanymeansaspossibletodivision1inthefuture.CEOTheCEOinadivisionalstrConclusionThestructureofthelearningenvironmentseemstobeatleastasimportantasthemeaningofthings.ConclusionThestructureoftheDifferentbiasesAfunctionalstructurecreatesanaggregationbiastowardsthegenerationofproduct-relateddata.Adivisionalstructuremeansanaggregationbiasregardingthegenerationoffunctionallyrelateddata.DifferentbiasesAfunctionalsIfthedegreeofrationalityissmallerthan1,theneachpartitioningentailsacertainbias.IfthedegreeofrationalityiComplexityand
self-organisationComplexityand
self-organisatInductiveboundedrationalityDecisionsarebasedonlimited,localinformation.InductiveboundedrationalityDMissinginformationisdealtwithbymakinganalogiesusingheuristicrulesofthumbconstructingplausible,simplerrepresentationsoftheproblemMissinginformationisdealtwIngredientsoftheorylearningbasedonfeedbackadjustrulesofthumbbasedonnaturalselectionIngredientsoftheorylearningHowdoyoumake(inductive)boundedrationalityoperational?Specifysimplebehaviouralrules.Howdoyoumake(inductive)boAtransitionrulespecifiesthenextstateofacellbyitscurrentstateandthelocalenvironment.AtransitionrulespecifiesthResearchquestionWhichsimplerulesdrivebehaviour?ResearchquestionWhichsimpleHowtoproceed?Trialanderrorbycomputersimulations.Howtoproceed?TrialanderrorHowdoyoumodelalocalenvironment?HowdoyoumodelalocalenvirFigure12.5:(a)vonNeumanenvironment,(b)Mooreenvironment
Figure12.5:(a)vonNeumanenExample:
SegregationGhettosExample:
SegregationGhettosSuppose
0:blue
X:greenSuppose
0:blue
X:greenFigure12.6:Startingposition
Figure12.6:StartingpositionTransitionrulesDonotmovewhenatleasthalfofthepersonsintheMoore-environmentisofthesamecolur.MovetothemostcloselocationwhereatleasthalfofthepersonsintheMoore-environmentisofthesamecolourwhenlessthanhalfofthepersonsinthecurrentMoore-environmentisofthesamecolour.TransitionrulesDonotmovewhFigure12.7:Stationarysituation
Figure12.7:StationarysituatExample:
FinanceInductive,boundedrationaldecisionmakersExample:
FinanceInductive,boTransitionrule/buy-saleofcomputerprogramPutmore(less)inriskystockswhenreturnswerepositive(negative)intherecentpast.Transitionrule/buy-saleofUnderlyingvaluePriceValuetImplicationNotanefficientmarketUnderlyingvaluePricetImplicatArchitecturechoice Vacancy Annualreportaccountant Lawinparliament IssueinUnitedNations Scientificjournal Possibilitiesofappeal Innovationprojectinfirm MarketsystemArchitecturechoice VacancyArchitectureRuleforaggregatinglocaldecisionsintoanorganisationdecision.ArchitectureRuleforaggregatiFigure12.12:Firmasacollectionofbureaus
Collectionofbureaus
Figure12.12:FirmasacollecTwoarchitecturesHierarchyPolyarchyTwoarchitecturesHierarchyHierarchyOrganisationonlyacceptsaprojectwhennobodyrejectsit.HierarchyOrganisationonlyaccFigure12.14:Hierarchy
Project
Office1
Office2
Accepted
no
1-p
no
1-p
Rejected
Rejected
p
yes
yes
p
Figure12.14:HierarchyProjeDecision-makingauthorityisconcentratedLocal/IndividualdecisionmakershavevetopowerAcceptancerequiresunanimityPropertiesDecision-makingauthorityiscPolyarchy Organisationonlyrejectsaprojectwheneverybodyrejectsit.Polyarchy OrganisationonlyreDecision-makingauthorityisnotconcentratedEverydecisionmakerhasthepow
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 楼板开口施工方案
- 河南公务员真题试卷
- 2024年福建省公务员考试真题
- 天然气及相关气体输送管道设施行业直播电商战略研究报告
- 体育小镇行业直播电商战略研究报告
- 游泳室内场所服务行业直播电商战略研究报告
- 2025-2030中国导电纺织品行业市场现状供需分析及投资评估规划分析研究报告
- 戏曲录像制品制作服务行业跨境出海战略研究报告
- 2025-2030中国家用食品蒸笼行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国家用灶行业市场深度调研及前景趋势与投资研究报告
- 全国统一卷试题及答案
- 矿石采购合同范本
- 2024年甘肃省烟草专卖局招聘考试真题
- 2025年龙江森工集团权属林业局有限公司招聘笔试参考题库含答案解析
- 2025年第三届天扬杯建筑业财税知识竞赛题库附答案(701-800题)
- (二模)温州市2025届高三第二次适应性考试英语试卷(含答案)+听力音频+听力原文
- DeepSeek+AI组合精准赋能教师教学能力进阶实战 课件 (图片版)
- 《哈哈镜笑哈哈》名师课件2022
- 2025年纤维检验员(高级)职业技能鉴定参考试题库(含答案)
- 传统皮影戏在小学艺术教育的应用与创新实践
- 2025年国家会展中心上海有限责任公司招聘笔试参考题库含答案解析
评论
0/150
提交评论