组织的经济学与管理学(英文)ch12-Limited-cognition-and-organisat课件_第1页
组织的经济学与管理学(英文)ch12-Limited-cognition-and-organisat课件_第2页
组织的经济学与管理学(英文)ch12-Limited-cognition-and-organisat课件_第3页
组织的经济学与管理学(英文)ch12-Limited-cognition-and-organisat课件_第4页
组织的经济学与管理学(英文)ch12-Limited-cognition-and-organisat课件_第5页
已阅读5页,还剩143页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter12LimitedcognitionandorganisationGeorgeHendrikseEconomicsandManagementofOrganisations:Co-ordination,MotivationandStrategy

Chapter12EconomicsandManageFieldsBehaviouralaccountingbehaviouralfinanceEconomicpsychology/consumerbehaviourOrganisationalbehaviourStrategicdecisionmakingFieldsBehaviouralaccountingFigureVI.1:Positioningofboundedrationalityapproaches

Behaviouralhypothesis

Opportunistic

Selfinterested

Idealistic

Complete

Rationality

Limited

X

Procedural

X

X

X

FigureVI.1:PositioningofboFirmfromanevolutionaryperspective

DeelV:TreeFirmfromanevolutionarypersMakingmistakes

Forgetting

LimitedreasoningcapabilitiesMakingmistakes

Forgetting

LimDegreeofrationalityRatioofthecognitivecapacitiesofthedecisionmakerandthecomplexityoftheproblem.DegreeofrationalityRatioofTypesofrationalityComplete:ratiois1Bounded:ratiobetween0and1Procedural:ratiois(almost)0TypesofrationalityComplete:Ifthedegreeofrationalityissmallerthan1,thentherewillbeabiasinbehaviour(comparedtothecompleterationalitycase).IfthedegreeofrationalityiIncreaseratiobyincreasingcognitivecapacities,cationdecreasingthecomplexityoftheproblem,e.g.bysplittinguptheproblem,usingcomputersIncreaseratiobyTwotypesofboundedrationalityDeductiveInductiveTwotypesofboundedrationaliPartitioningPartitioningDeductiveboundedrationalityHowtooptimallyallocatealimitednumberofcognitiveunitsinacomplexproblem?DeductiveboundedrationalityHHowtomake(deductive)boundedrationalityoperational?Numberofpartitionsofthesetofpossibleevents/states.Howtomake(deductive)boundeCognitivecapacitiesofapersonThecognitivecapacitiesofapersonarethenumberofpartitionsapersonisabletomakeinresponsetoaparticularproblem.CognitivecapacitiesofapersComplexityofaproblemThecomplexityofaproblemisthenumberofpartitionsthatisneededtodistinguishallaspects/states/eventsofaproblem.ComplexityofaproblemThecomExample:

ColourrecognitionproblemPossiblestates: R:Red G:Green W:White D:DarkExample:

ColourrecognitionpComplexityofthecolourrecognitionproblemR|G|W|DConclusion:3partitionsimpliescomplexity3.ComplexityofthecolourrecogFigure12.1:ColourrecognitioncapacitiesofdifferentdecisionmakersDecisionmaker

Partitioningofsetofstates

Degreeofrationality

Human

{(R),(G),(W),(D)}

3/3=1

Pussycat

{(R,G),(W),(D)}

2/3

Mole

{(R,G,W),(D)}

1/3

Spoon

{(R,G,W,D)}

0

Figure12.1:ColourrecognitioExample:

OrganisationalstructureFunctionalDivisionalExample:

OrganisationalstrucFunctionalstructure

Product1productionProduct2productionProduct1salesProduct2salesProductionSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOFunctionalstructure

Product1Divisionalstructure

Product1productionProduct1salesProduct2productionProduct2salesProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEODivisionalstructure

Product1Informationcompressionfromemployeestothebossisnecessaryduetolimitedcognitivecapacitiesoftheboss.

However,informationcompressionisnotneutral.Everystructureofinformationchannelsleadsinevitablytoacertainbiasintheprovisionofinformation.

InformationcompressionfromeExampleOrganisationconsistsoftwodivisionsEachdivisionconsistsoftwomanagersCEOonlyusesadviceofeachdivisionDivisionsbasetheiradviceoninformationofthelocalmanagersExampleOrganisationconsistsoInformationonlocalmanagersProductionmanager1(2)indicatesalways(never)thattherearepossibilitiesforcostreductionsMarketingmanager1(2)isalwaysoptimistic(pessimistic)regardingadditionalsalesinthefutureInformationonlocalmanagersPInformationaggregationAdivisionreportspositivelyonlywhenbothlocalmanagersarepositiveAdivisionreportsdoubtfulwhenthereportsofthelocalmanagersaremixedAdivisionreportsnegativelyonlywhenbothlocalmanagersarenegativeInformationaggregationAdivisInferencesinafunctionalstructure

Product1productionProduct2productionProduct1salesProduct2salesYesNoYesNoProductionAmbiguousAmbiguousSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOInferencesinafunctionalstrCEOTheCEOinafunctionalstructuredecidestodonothing.CEOTheCEOinafunctionalstrInferencesinadivisionalstructure

Product1productionProduct1salesProduct2productionProduct2salesYesYesNoNoProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEOYesNoInferencesinadivisionalstrCEOTheCEOinadivisionalstructuredecidestoallocateasmanymeansaspossibletodivision1inthefuture.CEOTheCEOinadivisionalstrConclusionThestructureofthelearningenvironmentseemstobeatleastasimportantasthemeaningofthings.ConclusionThestructureoftheDifferentbiasesAfunctionalstructurecreatesanaggregationbiastowardsthegenerationofproduct-relateddata.Adivisionalstructuremeansanaggregationbiasregardingthegenerationoffunctionallyrelateddata.DifferentbiasesAfunctionalsIfthedegreeofrationalityissmallerthan1,theneachpartitioningentailsacertainbias.IfthedegreeofrationalityiComplexityand

self-organisationComplexityand

self-organisatInductiveboundedrationalityDecisionsarebasedonlimited,localinformation.InductiveboundedrationalityDMissinginformationisdealtwithbymakinganalogiesusingheuristicrulesofthumbconstructingplausible,simplerrepresentationsoftheproblemMissinginformationisdealtwIngredientsoftheorylearningbasedonfeedbackadjustrulesofthumbbasedonnaturalselectionIngredientsoftheorylearningHowdoyoumake(inductive)boundedrationalityoperational?Specifysimplebehaviouralrules.Howdoyoumake(inductive)boAtransitionrulespecifiesthenextstateofacellbyitscurrentstateandthelocalenvironment.AtransitionrulespecifiesthResearchquestionWhichsimplerulesdrivebehaviour?ResearchquestionWhichsimpleHowtoproceed?Trialanderrorbycomputersimulations.Howtoproceed?TrialanderrorHowdoyoumodelalocalenvironment?HowdoyoumodelalocalenvirFigure12.5:(a)vonNeumanenvironment,(b)Mooreenvironment

Figure12.5:(a)vonNeumanenExample:

SegregationGhettosExample:

SegregationGhettosSuppose

0:blue

X:greenSuppose

0:blue

X:greenFigure12.6:Startingposition

Figure12.6:StartingpositionTransitionrulesDonotmovewhenatleasthalfofthepersonsintheMoore-environmentisofthesamecolur.MovetothemostcloselocationwhereatleasthalfofthepersonsintheMoore-environmentisofthesamecolourwhenlessthanhalfofthepersonsinthecurrentMoore-environmentisofthesamecolour.TransitionrulesDonotmovewhFigure12.7:Stationarysituation

Figure12.7:StationarysituatExample:

FinanceInductive,boundedrationaldecisionmakersExample:

FinanceInductive,boTransitionrule/buy-saleofcomputerprogramPutmore(less)inriskystockswhenreturnswerepositive(negative)intherecentpast.Transitionrule/buy-saleofUnderlyingvaluePriceValuetImplicationNotanefficientmarketUnderlyingvaluePricetImplicatArchitecturechoice Vacancy Annualreportaccountant Lawinparliament IssueinUnitedNations Scientificjournal Possibilitiesofappeal Innovationprojectinfirm MarketsystemArchitecturechoice VacancyArchitectureRuleforaggregatinglocaldecisionsintoanorganisationdecision.ArchitectureRuleforaggregatiFigure12.12:Firmasacollectionofbureaus

Collectionofbureaus

Figure12.12:FirmasacollecTwoarchitecturesHierarchyPolyarchyTwoarchitecturesHierarchyHierarchyOrganisationonlyacceptsaprojectwhennobodyrejectsit.HierarchyOrganisationonlyaccFigure12.14:Hierarchy

Project

Office1

Office2

Accepted

no

1-p

no

1-p

Rejected

Rejected

p

yes

yes

p

Figure12.14:HierarchyProjeDecision-makingauthorityisconcentratedLocal/IndividualdecisionmakershavevetopowerAcceptancerequiresunanimityPropertiesDecision-makingauthorityiscPolyarchy Organisationonlyrejectsaprojectwheneverybodyrejectsit.Polyarchy OrganisationonlyreDecision-makingauthorityisnotconcentratedEverydecisionmakerhasthepowertoacceptaprojectPropertiesDecision-makingauthorityisnFigure12.15:Polyarchy

Project

Office1

Office2

Accept

no

1-p

no

1-p

Reject

p

yes

yes

p

Accept

Figure12.15:PolyarchyProjeConclusionApolyarchyisgoodatacceptingprojects,whereashierarchiesaregoodatrejectingprojects.ConclusionApolyarchyisgoodWhichorganisationalchoiceminimiseserrorsofjudgement?WhichorganisationalchoicemiTherearetwotypesofmistakes:TypeIerrorsTypeIIerrorsTherearetwotypesofmistakeFigure12.13:type-Iversustype-IIerrors

accept

reject

accept

reject

good

project

bad

project

desirable

decision

type-

I

error

type-

II

error

desirable

decision

Figure12.13:type-IversustyChooseapolyarchywhentype-Ierrorsarerelativelyexpensive.Ahierarchyisdesirablewhentype-IIerrorsarerelativelyexpensive.Results

Chooseapolyarchywhentype-IEvolutionaryapproachesEvolutionaryapproachesEvolutionarypsychologyClaimsregardingthecognitivecapacitiesofpeoplehavetobebasedinevolutionarybiology.EvolutionarypsychologyClaimsResult1:

GlobalrationalityItisunlikelythatglobalrationalityemergesoutofanevolutionaryprocess.Result1:

GlobalrationalityIReason1:Adaptiveoroptimalbehaviourdependstoalargeextentonthespecificsituation.Reason2:Addingmoredimensionspreventsthatevenlimitedgeneralsystemswillfunctionwell.Thisisduetocombinatorialexplosion.Reason1:Thisresultsin:modularityhierarchyparallellisationThisresultsin:Reason3:Generalsystemsdonotperformwellinspecificsituationsbecausecrucialdetailsarenottakenintoaccount.Reason3:Result2:

formfollowsfunctionThepropertiesofanevolvedsystem/mechanism/formreflectthestructureoftheproblemthathastobedealtwith.Thenatureoftheproblemdirectsthereforethekindofsolutionthatisformulated.Result2:

formfollowsfunctiExample1:

Structurefollowsstrategy(Chandler,1962)Example1:

StructurefollowsNaturalselectionresultsinmechanismsgearedtowardsusinginformationintheformitispresented.NaturalselectionresultsinmChapter12LimitedcognitionandorganisationGeorgeHendrikseEconomicsandManagementofOrganisations:Co-ordination,MotivationandStrategy

Chapter12EconomicsandManageFieldsBehaviouralaccountingbehaviouralfinanceEconomicpsychology/consumerbehaviourOrganisationalbehaviourStrategicdecisionmakingFieldsBehaviouralaccountingFigureVI.1:Positioningofboundedrationalityapproaches

Behaviouralhypothesis

Opportunistic

Selfinterested

Idealistic

Complete

Rationality

Limited

X

Procedural

X

X

X

FigureVI.1:PositioningofboFirmfromanevolutionaryperspective

DeelV:TreeFirmfromanevolutionarypersMakingmistakes

Forgetting

LimitedreasoningcapabilitiesMakingmistakes

Forgetting

LimDegreeofrationalityRatioofthecognitivecapacitiesofthedecisionmakerandthecomplexityoftheproblem.DegreeofrationalityRatioofTypesofrationalityComplete:ratiois1Bounded:ratiobetween0and1Procedural:ratiois(almost)0TypesofrationalityComplete:Ifthedegreeofrationalityissmallerthan1,thentherewillbeabiasinbehaviour(comparedtothecompleterationalitycase).IfthedegreeofrationalityiIncreaseratiobyincreasingcognitivecapacities,cationdecreasingthecomplexityoftheproblem,e.g.bysplittinguptheproblem,usingcomputersIncreaseratiobyTwotypesofboundedrationalityDeductiveInductiveTwotypesofboundedrationaliPartitioningPartitioningDeductiveboundedrationalityHowtooptimallyallocatealimitednumberofcognitiveunitsinacomplexproblem?DeductiveboundedrationalityHHowtomake(deductive)boundedrationalityoperational?Numberofpartitionsofthesetofpossibleevents/states.Howtomake(deductive)boundeCognitivecapacitiesofapersonThecognitivecapacitiesofapersonarethenumberofpartitionsapersonisabletomakeinresponsetoaparticularproblem.CognitivecapacitiesofapersComplexityofaproblemThecomplexityofaproblemisthenumberofpartitionsthatisneededtodistinguishallaspects/states/eventsofaproblem.ComplexityofaproblemThecomExample:

ColourrecognitionproblemPossiblestates: R:Red G:Green W:White D:DarkExample:

ColourrecognitionpComplexityofthecolourrecognitionproblemR|G|W|DConclusion:3partitionsimpliescomplexity3.ComplexityofthecolourrecogFigure12.1:ColourrecognitioncapacitiesofdifferentdecisionmakersDecisionmaker

Partitioningofsetofstates

Degreeofrationality

Human

{(R),(G),(W),(D)}

3/3=1

Pussycat

{(R,G),(W),(D)}

2/3

Mole

{(R,G,W),(D)}

1/3

Spoon

{(R,G,W,D)}

0

Figure12.1:ColourrecognitioExample:

OrganisationalstructureFunctionalDivisionalExample:

OrganisationalstrucFunctionalstructure

Product1productionProduct2productionProduct1salesProduct2salesProductionSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOFunctionalstructure

Product1Divisionalstructure

Product1productionProduct1salesProduct2productionProduct2salesProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEODivisionalstructure

Product1Informationcompressionfromemployeestothebossisnecessaryduetolimitedcognitivecapacitiesoftheboss.

However,informationcompressionisnotneutral.Everystructureofinformationchannelsleadsinevitablytoacertainbiasintheprovisionofinformation.

InformationcompressionfromeExampleOrganisationconsistsoftwodivisionsEachdivisionconsistsoftwomanagersCEOonlyusesadviceofeachdivisionDivisionsbasetheiradviceoninformationofthelocalmanagersExampleOrganisationconsistsoInformationonlocalmanagersProductionmanager1(2)indicatesalways(never)thattherearepossibilitiesforcostreductionsMarketingmanager1(2)isalwaysoptimistic(pessimistic)regardingadditionalsalesinthefutureInformationonlocalmanagersPInformationaggregationAdivisionreportspositivelyonlywhenbothlocalmanagersarepositiveAdivisionreportsdoubtfulwhenthereportsofthelocalmanagersaremixedAdivisionreportsnegativelyonlywhenbothlocalmanagersarenegativeInformationaggregationAdivisInferencesinafunctionalstructure

Product1productionProduct2productionProduct1salesProduct2salesYesNoYesNoProductionAmbiguousAmbiguousSalesLocalmanagerOpportunitiesforimprovement?DivisionmanagerInformationCEOInferencesinafunctionalstrCEOTheCEOinafunctionalstructuredecidestodonothing.CEOTheCEOinafunctionalstrInferencesinadivisionalstructure

Product1productionProduct1salesProduct2productionProduct2salesYesYesNoNoProduct1Product2LocalmanagerOpportunitiesforimprovement?DivisionmanagerIncreasedprofit?opportunities?CEOYesNoInferencesinadivisionalstrCEOTheCEOinadivisionalstructuredecidestoallocateasmanymeansaspossibletodivision1inthefuture.CEOTheCEOinadivisionalstrConclusionThestructureofthelearningenvironmentseemstobeatleastasimportantasthemeaningofthings.ConclusionThestructureoftheDifferentbiasesAfunctionalstructurecreatesanaggregationbiastowardsthegenerationofproduct-relateddata.Adivisionalstructuremeansanaggregationbiasregardingthegenerationoffunctionallyrelateddata.DifferentbiasesAfunctionalsIfthedegreeofrationalityissmallerthan1,theneachpartitioningentailsacertainbias.IfthedegreeofrationalityiComplexityand

self-organisationComplexityand

self-organisatInductiveboundedrationalityDecisionsarebasedonlimited,localinformation.InductiveboundedrationalityDMissinginformationisdealtwithbymakinganalogiesusingheuristicrulesofthumbconstructingplausible,simplerrepresentationsoftheproblemMissinginformationisdealtwIngredientsoftheorylearningbasedonfeedbackadjustrulesofthumbbasedonnaturalselectionIngredientsoftheorylearningHowdoyoumake(inductive)boundedrationalityoperational?Specifysimplebehaviouralrules.Howdoyoumake(inductive)boAtransitionrulespecifiesthenextstateofacellbyitscurrentstateandthelocalenvironment.AtransitionrulespecifiesthResearchquestionWhichsimplerulesdrivebehaviour?ResearchquestionWhichsimpleHowtoproceed?Trialanderrorbycomputersimulations.Howtoproceed?TrialanderrorHowdoyoumodelalocalenvironment?HowdoyoumodelalocalenvirFigure12.5:(a)vonNeumanenvironment,(b)Mooreenvironment

Figure12.5:(a)vonNeumanenExample:

SegregationGhettosExample:

SegregationGhettosSuppose

0:blue

X:greenSuppose

0:blue

X:greenFigure12.6:Startingposition

Figure12.6:StartingpositionTransitionrulesDonotmovewhenatleasthalfofthepersonsintheMoore-environmentisofthesamecolur.MovetothemostcloselocationwhereatleasthalfofthepersonsintheMoore-environmentisofthesamecolourwhenlessthanhalfofthepersonsinthecurrentMoore-environmentisofthesamecolour.TransitionrulesDonotmovewhFigure12.7:Stationarysituation

Figure12.7:StationarysituatExample:

FinanceInductive,boundedrationaldecisionmakersExample:

FinanceInductive,boTransitionrule/buy-saleofcomputerprogramPutmore(less)inriskystockswhenreturnswerepositive(negative)intherecentpast.Transitionrule/buy-saleofUnderlyingvaluePriceValuetImplicationNotanefficientmarketUnderlyingvaluePricetImplicatArchitecturechoice Vacancy Annualreportaccountant Lawinparliament IssueinUnitedNations Scientificjournal Possibilitiesofappeal Innovationprojectinfirm MarketsystemArchitecturechoice VacancyArchitectureRuleforaggregatinglocaldecisionsintoanorganisationdecision.ArchitectureRuleforaggregatiFigure12.12:Firmasacollectionofbureaus

Collectionofbureaus

Figure12.12:FirmasacollecTwoarchitecturesHierarchyPolyarchyTwoarchitecturesHierarchyHierarchyOrganisationonlyacceptsaprojectwhennobodyrejectsit.HierarchyOrganisationonlyaccFigure12.14:Hierarchy

Project

Office1

Office2

Accepted

no

1-p

no

1-p

Rejected

Rejected

p

yes

yes

p

Figure12.14:HierarchyProjeDecision-makingauthorityisconcentratedLocal/IndividualdecisionmakershavevetopowerAcceptancerequiresunanimityPropertiesDecision-makingauthorityiscPolyarchy Organisationonlyrejectsaprojectwheneverybodyrejectsit.Polyarchy OrganisationonlyreDecision-makingauthorityisnotconcentratedEverydecisionmakerhasthepow

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论