2023届四川省重点中学中考数学猜题卷含答案解析_第1页
2023届四川省重点中学中考数学猜题卷含答案解析_第2页
2023届四川省重点中学中考数学猜题卷含答案解析_第3页
2023届四川省重点中学中考数学猜题卷含答案解析_第4页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届四川省重点中学中考数学猜题卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于()A.2B.3C.4D.62.的算术平方根是()A.9 B.±9 C.±3 D.33.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A.点B、点C都在⊙A内 B.点C在⊙A内,点B在⊙A外C.点B在⊙A内,点C在⊙A外 D.点B、点C都在⊙A外4.下列说法错误的是()A.的相反数是2 B.3的倒数是C. D.,0,4这三个数中最小的数是05.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米6.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个 B.3个 C.4个 D.5个7.下列计算,正确的是()A.a2•a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+18.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是()A. B.C. D.9.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为()A. B. C. D.10.不等式组的解集在数轴上表示为()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.若a+b=5,ab=3,则a2+b2=_____.12.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.13.关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根是0,则k的值是______.14.抛物线y=2x2+4x﹣2的顶点坐标是_______________.15.观察下列一组数,,,,,…探究规律,第n个数是_____.16.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为.三、解答题(共8题,共72分)17.(8分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次调查的样本为,样本容量为;在频数分布表中,a=,b=,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?18.(8分)解不等式:﹣≤119.(8分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).20.(8分)(1)计算:﹣22+|﹣4|+()-1+2tan60°(2)求不等式组的解集.21.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.22.(10分)如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.23.(12分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.24.解不等式组:并写出它的所有整数解.

2023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、C【答案解析】设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,

∴R=4cm.故选C.2、D【答案解析】

根据算术平方根的定义求解.【题目详解】∵=9,

又∵(±1)2=9,

∴9的平方根是±1,

∴9的算术平方根是1.

即的算术平方根是1.

故选:D.【答案点睛】考核知识点:算术平方根.理解定义是关键.3、D【答案解析】

先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系.【题目详解】由题意可求出∠A=30°,AB=2BC=4,由勾股定理得AC==2,AB=4>3,AC=2>3,点B、点C都在⊙A外.故答案选D.【答案点睛】本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.4、D【答案解析】测试卷分析:﹣2的相反数是2,A正确;3的倒数是,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.5、C【答案解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.6、C【答案解析】

测试卷分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【答案点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质7、C【答案解析】

解:A.故错误;B.故错误;C.正确;D.故选C.【答案点睛】本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.8、B【答案解析】

根据题意找到从左面看得到的平面图形即可.【题目详解】这个立体图形的左视图是,

故选:B.【答案点睛】本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.9、D【答案解析】

如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式来求的长【题目详解】解:如图,连接OD.解:如图,连接OD.

根据折叠的性质知,OB=DB.

又∵OD=OB,

∴OD=OB=DB,即△ODB是等边三角形,

∴∠DOB=60°.

∵∠AOB=110°,

∴∠AOD=∠AOB-∠DOB=50°,

∴的长为=5π.

故选D.【答案点睛】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.10、A【答案解析】

分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【题目详解】解不等式①得,x>1;解不等式②得,x>2;∴不等式组的解集为:x≥2,在数轴上表示为:故选A.【答案点睛】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【答案解析】测试卷分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案为1.考点:完全平方公式.12、【答案解析】

列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【题目详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为=,故答案为.【答案点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.13、2.【答案解析】测试卷解析:由于关于x的一元二次方程的一个根是2,把x=2代入方程,得,解得,k2=2,k2=2当k=2时,由于二次项系数k﹣2=2,方程不是关于x的二次方程,故k≠2.所以k的值是2.故答案为2.14、(﹣1,﹣1)【答案解析】

利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【题目详解】x=-=-1,把x=-1代入得:y=2-1-2=-1.则顶点的坐标是(-1,-1).故答案是:(-1,-1).【答案点睛】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.15、【答案解析】

根据已知得出数字分母与分子的变化规律,分子是连续的正整数,分母是连续的奇数,进而得出第n个数分子的规律是n,分母的规律是2n+1,进而得出这一组数的第n个数的值.【题目详解】解:因为分子的规律是连续的正整数,分母的规律是2n+1,

所以第n个数就应该是:,

故答案为.【答案点睛】此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.解题的关键是把数据的分子分母分别用组数n表示出来.16、53【答案解析】测试卷分析:根据图形可知圆锥的侧面展开图的弧长为2π×10÷2=10π(cm),因此圆锥的底面半径为10π÷2π=5(cm),因此圆锥的高为:102-5考点:圆锥的计算三、解答题(共8题,共72分)17、200名初中毕业生的视力情况200600.05【答案解析】

(1)根据视力在4.0≤x<4.3范围内的频数除以频率即可求得样本容量;(2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;(3)求出样本中视力正常所占百分比乘以5000即可得解.【题目详解】(1)根据题意得:20÷0.1=200,即本次调查的样本容量为200,故答案为200;(2)a=200×0.3=60,b=10÷200=0.05,补全频数分布图,如图所示,故答案为60,0.05;(3)根据题意得:5000×=3500(人),则全区初中毕业生中视力正常的学生有估计有3500人.18、x≥.【答案解析】

根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【题目详解】2(2﹣3x)﹣3(x﹣1)≤6,4﹣6x﹣3x+3≤6,﹣6x﹣3x≤6﹣4﹣3,﹣9x≤﹣1,x≥.【答案点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19、44cm【答案解析】解:如图,设BM与AD相交于点H,CN与AD相交于点G,由题意得,MH=8cm,BH=40cm,则BM=32cm,∵四边形ABCD是等腰梯形,AD=50cm,BC=20cm,∴.∵EF∥CD,∴△BEM∽△BAH.∴,即,解得:EM=1.∴EF=EM+NF+BC=2EM+BC=44(cm).答:横梁EF应为44cm.根据等腰梯形的性质,可得AH=DG,EM=NF,先求出AH、GD的长度,再由△BEM∽△BAH,可得出EM,继而得出EF的长度.20、(1)1;(2)-1≤x<1.【答案解析】测试卷分析:(1)、首先根据绝对值、幂、三角函数的计算法则得出各式的值,然后进行求和得出答案;(2)、分半求出每个不等式的解,然后得出不等式组的解.测试卷解析:解:(1)、(2)、由得:x<1,由得:x≥-1,∴不等式的解集:-1≤x<1.21、(1)见解析(2)7.5【答案解析】

(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=10,在Rt△ADC中,求得DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解决问题.【题目详解】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠A=∠ADE;(2)连接CD,∵∠A=∠ADE∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC=,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,∴x2+62=(x+8)2-102,解得x=4.5,∴BC=【答案点睛】此题主要考查圆的切线问题,解题的关键是熟知切线的性质.22、(1)125°;(2)125°;(3)∠BOC=90°+n°.【答案解析】

如图,由BO、CO是角平分线得∠ABC=2∠1,∠ACB=2∠2,再利用三角形内角和得到∠ABC+∠ACB+∠A=180°,则2∠1+2∠2+∠A=180°,接着再根据三角形内角和得到∠1+∠2+∠BOC=180°,利用等式的性质进行变换可得∠BOC=90°+∠A,然后根据此结论分别解决(1)、(2)、(3).【题目详解】如图,∵BO、CO是角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论