安徽省宣城市名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析_第1页
安徽省宣城市名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析_第2页
安徽省宣城市名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析_第3页
安徽省宣城市名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析_第4页
安徽省宣城市名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析_第5页
免费预览已结束,剩余22页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将△ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DE∥BC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是()A. B. C. D.2.已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最小值为4,则的值为()A.1或5 B.或3 C.或1 D.或53.最小的正整数是()A.0B.1C.﹣1D.不存在4.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤5.下列图形中,既是中心对称图形又是轴对称图形的是()A. B.C. D.6.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为()A.70° B.65° C.62° D.60°7.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.8.如图所示,a∥b,直线a与直线b之间的距离是()A.线段PA的长度 B.线段PB的长度C.线段PC的长度 D.线段CD的长度9.关于x的方程3x+2a=x﹣5的解是负数,则a的取值范围是()A.a< B.a> C.a<﹣ D.a>﹣10.等腰三角形底角与顶角之间的函数关系是()A.正比例函数 B.一次函数 C.反比例函数 D.二次函数11.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.512.下列实数中,在2和3之间的是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APB=_____________.14.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为__________.15.如图,已知是的高线,且,,则_________.16.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是_____.17.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.18.某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.(1)求证:;(2)若,求tan∠CED的值.20.(6分)如图,已知⊙O,请用尺规做⊙O的内接正四边形ABCD,(保留作图痕迹,不写做法)21.(6分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率.22.(8分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90°得线段PQ.(1)当点Q落到AD上时,∠PAB=____°,PA=_____,长为_____;(2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;(3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.23.(8分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数在第一象限内的图象经过点D(m,2)和AB边上的点E(n,).(1)求m、n的值和反比例函数的表达式.(2)将矩形OABC的一角折叠,使点O与点D重合,折痕分别与x轴,y轴正半轴交于点F,G,求线段FG的长.24.(10分)计算:(﹣1)4﹣2tan60°+.25.(10分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.26.(12分)十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1全国森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)122001150125001340015894.0917490.9219545.2220768.73森林覆盖率12.7%12%12.98%13.92%16.55%18.21%20.36%21.63%表2北京森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)33.7437.8852.0558.81森林覆盖率11.2%8.1%12.08%14.99%18.93%21.26%31.72%35.84%(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1)从第次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到万公顷(用含a和b的式子表示).27.(12分)已知顶点为A的抛物线y=a(x-)2-2经过点B(-,2),点C(,2).(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】

利用相似三角形的性质即可判断.【详解】设AD=x,AE=y,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故选:C.【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、D【解析】

由解析式可知该函数在时取得最小值0,抛物线开口向上,当时,y随x的增大而增大;当时,y随x的增大而减小;根据时,函数的最小值为4可分如下三种情况:①若,时,y取得最小值4;②若-1<h<3时,当x=h时,y取得最小值为0,不是4;③若,当x=3时,y取得最小值4,分别列出关于h的方程求解即可.【详解】解:∵当x>h时,y随x的增大而增大,当时,y随x的增大而减小,并且抛物线开口向上,

∴①若,当时,y取得最小值4,

可得:4,

解得或(舍去);

②若-1<h<3时,当x=h时,y取得最小值为0,不是4,

∴此种情况不符合题意,舍去;

③若-1≤x≤3<h,当x=3时,y取得最小值4,

可得:,

解得:h=5或h=1(舍).

综上所述,h的值为-3或5,

故选:D.【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.3、B【解析】

根据最小的正整数是1解答即可.【详解】最小的正整数是1.故选B.【点睛】本题考查了有理数的认识,关键是根据最小的正整数是1解答.4、C【解析】

根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a<0,b<0,c>0,则①当x=1时,y=a+b+c<0,正确;②当x=-1时,y=a-b+c>1,正确;③abc>0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.故所有正确结论的序号是①②③⑤.故选C5、D【解析】

根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;D.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的定义,解题的关键是熟练的掌握中心对称图形与轴对称图形的定义.6、A【解析】

由AB∥CD,根据两直线平行,内错角相等,即可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,继而求得答案.【详解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故选:A.【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答.7、D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得y=18-x18-y=y-x故选D.考点:由实际问题抽象出二元一次方程组8、A【解析】分析:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,由此可得出答案.详解:∵a∥b,AP⊥BC∴两平行直线a、b之间的距离是AP的长度∴根据平行线间的距离相等∴直线a与直线b之间的距离AP的长度故选A.点睛:本题考查了平行线之间的距离,属于基础题,关键是掌握平行线之间距离的定义.9、D【解析】

先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得.【详解】解方程3x+2a=x﹣5得x=,因为方程的解为负数,所以<0,解得:a>﹣.【点睛】本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.10、B【解析】

根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.11、C【解析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C.12、C【解析】

分析:先求出每个数的范围,逐一分析得出选项.详解:A、3<π<4,故本选项不符合题意;

B、1<π−2<2,故本选项不符合题意;

C、2<<3,故本选项符合题意;

D、3<<4,故本选项不符合题意;故选C.点睛:本题考查了估算无理数的大小,能估算出每个数的范围是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、°【解析】

通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APB.【详解】把△PAB绕B点顺时针旋转90°,得△P′BC,则△PAB≌△P′BC,设PA=x,PB=2x,PC=3x,连PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案为135°.【点睛】本题考查的是正方形四边相等的性质,考查直角三角形中勾股定理的运用,把△PAB顺时针旋转90°使得A′与C点重合是解题的关键.14、y1<y1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y1的大小,从而可以解答本题.详解:∵反比例函数y=-,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y1)是反比例函数y=-图象上的两个点,-4<-1,∴y1<y1,故答案为:y1<y1.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.15、4cm【解析】

根据三角形的高线的定义得到,根据直角三角形的性质即可得到结论.【详解】解:∵是的高线,∴,∵,,∴.故答案为:4cm.【点睛】本题考查了三角形的角平分线、中线、高线,含30°角的直角三角形,熟练掌握直角三角形的性质是解题的关键.16、x<﹣2或0<x<2【解析】

仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【详解】解:如图,结合图象可得:①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.故答案为x<﹣2或0<x<2.【点睛】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x的取值范围.17、1或1【解析】

由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一个圆的半径.【详解】∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,∴这两圆内切,∴若大圆的半径为4,则另一个圆的半径为:4-3=1,若小圆的半径为4,则另一个圆的半径为:4+3=1.故答案为:1或1【点睛】此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.18、4cm.【解析】

由题意知OD⊥AB,交AB于点C,由垂径定理可得出BC的长,在Rt△OBC中,根据勾股定理求出OC的长,由CD=OD-OC即可得出结论.【详解】由题意知OD⊥AB,交AB于点E,∵AB=16cm,∴BC=AB=×16=8cm,在Rt△OBE中,∵OB=10cm,BC=8cm,∴OC=(cm),∴CD=OD-OC=10-6=4(cm)故答案为4cm.【点睛】本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)tan∠CED=【解析】

(1)欲证明,只要证明即可;(2)由,可得,设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,由,可得BD•BE=BC•BA,设AC=BC=x,则有,由此求出AC、CD即可解决问题.【详解】(1)证明:如下图,连接AE,∵AD是直径,∴,∴DC⊥AB,∵AC=CB,∴DA=DB,∴∠CDA=∠CDB,∵,,∴∠BDC=∠EAC,∵∠AEC=∠ADC,∴∠EAC=∠AEC,∴;(2)解:如下图,连接OC,∵AO=OD,AC=CB,∴OC∥BD,∴,∴,设FO=2a,OC=3a,则DF=a,DE=1.5a,AD=DB=6a,∵∠BAD=∠BEC,∠B=∠B,∴,∴BD•BE=BC•BA,设AC=BC=x,则有,∴,∴,∴,∴.【点睛】本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.20、见解析【解析】

根据内接正四边形的作图方法画出图,保留作图痕迹即可.【详解】任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.【点睛】此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键.21、【解析】

根据列表法先画出列表,再求概率.【详解】解:列表如下:23562(2,3)(2,5)(2,6)3(3,2)(3,5)(3,6)5(5,2)(5,3)(5,6)6(6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之和为偶数的有4种,所以P(数字之和都是偶数).【点睛】此题重点考查学生对概率的应用,掌握列表法是解题的关键.22、(1)45,,π;(2)满足条件的∠QQ0D为45°或135°;(3)BP的长为或;(4)≤CQ≤7.【解析】

(1)由已知,可知△APQ为等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的长度;(2)分点Q在BD上方和下方的情况讨论求解即可.(3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP0表示BP,由射影定理计算即可;(4)由(2)可知,点Q在过点Qo,且与BD夹角为45°的线段EF上运动,有图形可知,当点Q运动到点E时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值.【详解】解:(1)如图,过点P做PE⊥AD于点E由已知,AP=PQ,∠APQ=90°∴△APQ为等腰直角三角形∴∠PAQ=∠PAB=45°设PE=x,则AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的长为•2π•=π.故答案为45,,π.(2)如图,过点Q做QF⊥BD于点F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.当点Q在BD的右下方时,同理可得∠PQ0Q=45°,此时∠QQ0D=135°,综上所述,满足条件的∠QQ0D为45°或135°.(3)如图当点Q直线BD上方,当以点Q为圆心,BP为半径的圆与直线BD相切时过点Q做QF⊥BD于点F,则QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0•BD∴9=BP×5∴BP=同理,当点Q位于BD下方时,可求得BP=故BP的长为或(4)由(2)可知∠QQ0D=45°则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7∴EF===5过点C做CH⊥EF于点H由面积法可知CH===∴CQ的取值范围为:≤CQ≤7【点睛】本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.23、(1)y=;(2).【解析】

(1)根据题意得出,解方程即可求得m、n的值,然后根据待定系数法即可求得反比例函数的解析式;(2)设OG=x,则GD=OG=x,CG=2﹣x,根据勾股定理得出关于x的方程,解方程即可求得DG的长,过F点作FH⊥CB于H,易证得△GCD∽△DHF,根据相似三角形的性质求得FG,最后根据勾股定理即可求得.【详解】(1)∵D(m,2),E(n,),∴AB=BD=2,∴m=n﹣2,∴,解得,∴D(1,2),∴k=2,∴反比例函数的表达式为y=;(2)设OG=x,则GD=OG=x,CG=2﹣x,在Rt△CDG中,x2=(2﹣x)2+12,解得x=,过F点作FH⊥CB于H,∵∠GDF=90°,∴∠CDG+∠FDH=90°,∵∠CDG+∠CGD=90°,∴∠CGD=∠FDH,∵∠GCD=∠FHD=90°,∴△GCD∽△DHF,∴,即,∴FD=,∴FG=.【点睛】本题考查了反比例函数与几何综合题,涉及了待定系数法、勾股定理、相似三角形的判定与性质等,熟练掌握待定系数法、相似三角形的判定与性质是解题的关键.24、1【解析】首先利用乘方、二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案.解:原式==1.“点睛”此题主要考查了实数运算,正确化简各数是解题关键.,25、(1)见解析;(2)①120°;②45°【解析】

(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;

(2)①证出OA=OP=PA,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;

②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【详解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圆O的直径,∴OA=OB,∴PC=OB.又PC∥AB,∴四边形OBCP是平行四边形.(2)①∵四边形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为45°.【点睛】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.26、(1)四;(2)见解析;(3).【解析】

(1)比较两个折线统计图,找出满足题意的调查次数即可;(2)描出第四次与第五次北京森林覆盖率,补全折线统计图即可;(3)根据第八次全面森林面积除以森林覆盖率求出全国总面积,除以第九次的森林覆盖率,即可得到结果.【详解】解:(1)观察两折线统计图比较得:从第四次清查开始,北京的森林覆盖率超过全国的森林覆盖率;故答案为四;(2)补全折线统计图,如图所示

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论