




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
R语言与非参数统计(核密度估计)R语言与非参数统计(核密度估计)1
核密度估计是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt(1955)和EmanuelParzen(1962)提出,又名Parzen窗(Parzenwindow)。
假设我们有n个数X1-Xn,我们要计算某一个数X的概率密度有多大。核密度估计的方法是这样的:
其中K为核密度函数,h为设定的窗宽。
核密度估计是在概率论中用来估计未知的密度函数,属于非参2
核密度估计的原理其实是很简单的。在我们对某一事物的概率分布的情况下。如果某一个数在观察中出现了,我们可以认为这个数的概率密度很大,和这个数比较近的数的概率密度也会比较大,而那些离这个数远的数的概率密度会比较小。基于这种想法,针对观察中的第一个数,我们都可以f(x-xi)去拟合我们想象中的那个远小近大概率密度。当然其实也可以用其他对称的函数。针对每一个观察中出现的数拟合出多个概率密度分布函数之后,取平均。如果某些数是比较重要,某些数反之,则可以取加权平均。
核密度估计的原理其实是很简单的。在我们对某一事物的概率分布3
但是核密度的估计并不是,也不能够找到真正的分布函数。我们可以举一个极端的例子:在R中输入:plot(density(rep(0,
1000)))
可以看到它得到了正态分布的曲线,但实际上呢?从数据上判断,它更有可能是一个退化的单点分布。
但是核密度的估计并不是,也不能够找到真正的分布函数。我们可4但是这并不意味着核密度估计是不可取的,至少他可以解决许多模拟中存在的异方差问题。比如说我们要估计一下下面的一组数据:set.seed(10)
dat<c(rgamma(300,shape=2,scale=2),rgamma(100,shape=10,scale=2))
但是这并不意味着核密度估计是不可取的,至少他可以解决许多模拟5R语言与核密度估计(非参数统计)课件6可以看出它是由300个服从gamma(2,2)与100个gamma(10,2)的随机数构成的,他用参数统计的办法是没有办法得到一个好的估计的。那么我们尝试使用核密度估计:plot(density(dat),ylim=c(0,0.2))
可以看出它是由300个服从gamma(2,2)与100个ga7将利用正态核密度与标准密度函数作对比dfn<-function(x,a,alpha1,alpha2,theta){
a*dgamma(x,shape=alpha1,scale=theta)+(1-a)*dgamma(x,shape=alpha2,scale=theta)}
pfn<-function(x,a,alpha1,alpha2,theta){
a*pgamma(x,shape=alpha1,scale=theta)+(1-a)*pgamma(x,shape=alpha2,scale=theta)}
curve(dfn(x,0.75,2,10,2),add=T,col="red")
将利用正态核密度与标准密度函数作对比8得到下图:(红色的曲线为真实密度曲线)得到下图:9可以看出核密度与真实密度相比,得到大致的估计是不成问题的。至少趋势是得到了的。如果换用gamma分布的核效果无疑会更好,但是遗憾的是r中并没有提供那么多的核供我们挑选(其实我们知道核的选择远没有窗宽的选择来得重要),所以也无需介怀。R中提供的核:kernel=c("gaussian","epanechnikov","rectangular",
"triangular","biweight","cosine","optcosine")。可以看出核密度与真实密度相比,得到大致的估计是不成问题的。至10我们先来看看窗宽的选择对核密度估计的影响:dfn1<-function(x){
0.5*dnorm(x,3,1)+0.5*dnorm(x,-3,1)}
par(mfrow=c(2,2))
curve(dfn1(x),from=-6,to=6)
data<-c(rnorm(200,3,1),rnorm(200,-3,1))
plot(density(data,bw=8))
plot(density(data,bw=0.8))
plot(density(data,bw=0.08))
我们先来看看窗宽的选择对核密度估计的影响:11得到下图,我们可以清楚的看到带宽为0.8恰好合适,其余的不是拟合不足便是过拟合。得到下图,我们可以清楚的看到带宽为0.8恰好合适,其余的不是12R语言与核密度估计(非参数统计)课件13窗宽究竟该如何选择呢?我们这里不加证明的给出最佳窗宽选择公式:
窗宽究竟该如何选择呢?14(这个基于积分均方误差最小的角度得到的)这里介绍两个可操作的窗宽估计办法:(这两种方法都比较容易导致过分光滑)1、
Silverman大拇指法则这里使用R(phi’’)/sigma^5估计R(f’’),phi代表标准正态密度函数,得到h的表达式:h=(4/(3n))^(*1/5)*sigma2、
极大光滑原则h=3*(R(K)/(35n))^(1/5)*sigma当然也有比较麻烦的窗宽估计办法,比如缺一交叉验证,插入法等,可以参阅《computationalstatistics》一书(这个基于积分均方误差最小的角度得到的)15我们用上面的两种办法得到的窗宽是多少,他的核密度估计效果好吗?我们还是以上面的混合正态数据为例来看看效果。使用大拇指法则,将数据n=400,sigma=3.030658,带入公式,h=0.9685291使用极大光滑原则,假设K为正态核,R(K)=1/(sqrt(2*pi)),h=1.121023可以看出他们都比我们认为的h=0.8要大一些,作图如下:我们用上面的两种办法得到的窗宽是多少,他的核密度估计效果好吗16plot(density(data,bw=0.9685))
plot(density(data,bw=1.1210))
plot(density(data,bw=0.9685))
17由我们给出的以Gauss核为例做核密度估计用Gauss核做核密度估计的R程序如下(还是使用我们的混合正态密度的例子):由我们给出的18ker.density=function(x,h){
x=sort(x)
n=length(x);s=0;t=0;y=0
for(i
in
2:n)
s[i]=0
for(i
in
1:n){
for(j
in
1:n)
s[i]=s[i]+exp(-((x[i]-x[j])^2)/(2*h*h))
t[i]=s[i]
}
for(i
in
1:n)
y[i]=t[i]/(n*h*sqrt(2*pi))
z=complex(re=x,im=y)
hist(x,freq=FALSE)
lines(z)
}
ker.density(data,0.8)
ker.density=function(x,h){
19作图如下:作图如下:20最后说一个R的内置函数density()。其实我觉得如果不是为了简要介绍核密度估计的一些常识我们完全可以只学会这个函数先看看函数的基本用法:density(x,...)##DefaultS3method:最后说一个R的内置函数density()。其实我觉得如果不是21density(x,bw="nrd0",adjust=1,
kernel=c("gaussian","epanechnikov","rectangular",
"triangular","biweight",
"cosine","optcosine"),
weights=NULL,window=kernel,width,
give.Rkern=FALSE,
n=512,from,to,cut=3,na.rm=FALSE,...)
density(x,bw="nrd0",adjust22对重要参数做出较为详细的说明:X:我们要进行核密度估计的数据Bw:窗宽,这里可以由我们自己制定,也可以使用默认的办法nrd0:BandwidthselectorsforGaussiankernels。我们还可以使用bw.SJ(x,nb=1000,lower=0.1*hmax,upper=hmax,
method=c("ste","dpi"),tol=0.1*lower),这里的method=”dpi”就是前面提到过的插入法,”ste”代表solve-the-equationplug-in,也是插入法的改进Kernel:核的选择Weights:对比较重要的数据采取加权处理对重要参数做出较为详细的说明:23对于上述混合正态数据data,有>density(data)
Call:
density.default(x=data)
对于上述混合正态数据data,有24Data:data(400obs.);
Bandwidth'bw'=0.8229
x
y
Min.
:-7.5040
Min.
:0.0000191
1stQu.:-3.5076
1stQu.:0.0064919
Median:0.4889
Median:0.0438924
Mean
:0.4889
Mean
:0.0624940
3rdQu.:4.4853
3rdQu.:0.1172919
Max.
:8.4817
Max.
:0.1615015
Data:data(400obs.);
Bandwi25知道带宽:h=0.8229(采取正态密度核)那么带入密度估计式就可以写出密度估计函数。最后以faithful数据集为例说明density的用法:R数据集faithful是oldfaithful火山爆发的数据,其中“eruption”是火山爆发的持续时间,waiting是时间间隔对数据“eruption”做核密度估计知道带宽:h=0.8229(采取正态密度核)那么带入密度估计26R程序:data(faithful)
A<-faithful
x<-A[,"eruptions"]
density(x)
plot(density(x))
知道h=0.3348作图:R程序:27R语言与核密度估计(非参数统计)课件28于核密度估计R中还有不少函数包提供了大量的支持:可以研读一下如下几个包,也可以自己编程去实现
ks
KernelsmoothingKendall
KendallrankcorrelationandMann-KendalltrendtestKernSmooth
FunctionsforkernelsmoothingforWand&Jones(1995)Kappalab
Non-additivemeasureandintegralmanipulationfunctionsKerfdr
semi-parametrickernel-basedapproachtolocalfdrestimationsKernlab
KernelMethodsLab于核密度估计R中还有不少函数包提供了大量的支持:29R语言与非参数统计(核密度估计)R语言与非参数统计(核密度估计)30
核密度估计是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt(1955)和EmanuelParzen(1962)提出,又名Parzen窗(Parzenwindow)。
假设我们有n个数X1-Xn,我们要计算某一个数X的概率密度有多大。核密度估计的方法是这样的:
其中K为核密度函数,h为设定的窗宽。
核密度估计是在概率论中用来估计未知的密度函数,属于非参31
核密度估计的原理其实是很简单的。在我们对某一事物的概率分布的情况下。如果某一个数在观察中出现了,我们可以认为这个数的概率密度很大,和这个数比较近的数的概率密度也会比较大,而那些离这个数远的数的概率密度会比较小。基于这种想法,针对观察中的第一个数,我们都可以f(x-xi)去拟合我们想象中的那个远小近大概率密度。当然其实也可以用其他对称的函数。针对每一个观察中出现的数拟合出多个概率密度分布函数之后,取平均。如果某些数是比较重要,某些数反之,则可以取加权平均。
核密度估计的原理其实是很简单的。在我们对某一事物的概率分布32
但是核密度的估计并不是,也不能够找到真正的分布函数。我们可以举一个极端的例子:在R中输入:plot(density(rep(0,
1000)))
可以看到它得到了正态分布的曲线,但实际上呢?从数据上判断,它更有可能是一个退化的单点分布。
但是核密度的估计并不是,也不能够找到真正的分布函数。我们可33但是这并不意味着核密度估计是不可取的,至少他可以解决许多模拟中存在的异方差问题。比如说我们要估计一下下面的一组数据:set.seed(10)
dat<c(rgamma(300,shape=2,scale=2),rgamma(100,shape=10,scale=2))
但是这并不意味着核密度估计是不可取的,至少他可以解决许多模拟34R语言与核密度估计(非参数统计)课件35可以看出它是由300个服从gamma(2,2)与100个gamma(10,2)的随机数构成的,他用参数统计的办法是没有办法得到一个好的估计的。那么我们尝试使用核密度估计:plot(density(dat),ylim=c(0,0.2))
可以看出它是由300个服从gamma(2,2)与100个ga36将利用正态核密度与标准密度函数作对比dfn<-function(x,a,alpha1,alpha2,theta){
a*dgamma(x,shape=alpha1,scale=theta)+(1-a)*dgamma(x,shape=alpha2,scale=theta)}
pfn<-function(x,a,alpha1,alpha2,theta){
a*pgamma(x,shape=alpha1,scale=theta)+(1-a)*pgamma(x,shape=alpha2,scale=theta)}
curve(dfn(x,0.75,2,10,2),add=T,col="red")
将利用正态核密度与标准密度函数作对比37得到下图:(红色的曲线为真实密度曲线)得到下图:38可以看出核密度与真实密度相比,得到大致的估计是不成问题的。至少趋势是得到了的。如果换用gamma分布的核效果无疑会更好,但是遗憾的是r中并没有提供那么多的核供我们挑选(其实我们知道核的选择远没有窗宽的选择来得重要),所以也无需介怀。R中提供的核:kernel=c("gaussian","epanechnikov","rectangular",
"triangular","biweight","cosine","optcosine")。可以看出核密度与真实密度相比,得到大致的估计是不成问题的。至39我们先来看看窗宽的选择对核密度估计的影响:dfn1<-function(x){
0.5*dnorm(x,3,1)+0.5*dnorm(x,-3,1)}
par(mfrow=c(2,2))
curve(dfn1(x),from=-6,to=6)
data<-c(rnorm(200,3,1),rnorm(200,-3,1))
plot(density(data,bw=8))
plot(density(data,bw=0.8))
plot(density(data,bw=0.08))
我们先来看看窗宽的选择对核密度估计的影响:40得到下图,我们可以清楚的看到带宽为0.8恰好合适,其余的不是拟合不足便是过拟合。得到下图,我们可以清楚的看到带宽为0.8恰好合适,其余的不是41R语言与核密度估计(非参数统计)课件42窗宽究竟该如何选择呢?我们这里不加证明的给出最佳窗宽选择公式:
窗宽究竟该如何选择呢?43(这个基于积分均方误差最小的角度得到的)这里介绍两个可操作的窗宽估计办法:(这两种方法都比较容易导致过分光滑)1、
Silverman大拇指法则这里使用R(phi’’)/sigma^5估计R(f’’),phi代表标准正态密度函数,得到h的表达式:h=(4/(3n))^(*1/5)*sigma2、
极大光滑原则h=3*(R(K)/(35n))^(1/5)*sigma当然也有比较麻烦的窗宽估计办法,比如缺一交叉验证,插入法等,可以参阅《computationalstatistics》一书(这个基于积分均方误差最小的角度得到的)44我们用上面的两种办法得到的窗宽是多少,他的核密度估计效果好吗?我们还是以上面的混合正态数据为例来看看效果。使用大拇指法则,将数据n=400,sigma=3.030658,带入公式,h=0.9685291使用极大光滑原则,假设K为正态核,R(K)=1/(sqrt(2*pi)),h=1.121023可以看出他们都比我们认为的h=0.8要大一些,作图如下:我们用上面的两种办法得到的窗宽是多少,他的核密度估计效果好吗45plot(density(data,bw=0.9685))
plot(density(data,bw=1.1210))
plot(density(data,bw=0.9685))
46由我们给出的以Gauss核为例做核密度估计用Gauss核做核密度估计的R程序如下(还是使用我们的混合正态密度的例子):由我们给出的47ker.density=function(x,h){
x=sort(x)
n=length(x);s=0;t=0;y=0
for(i
in
2:n)
s[i]=0
for(i
in
1:n){
for(j
in
1:n)
s[i]=s[i]+exp(-((x[i]-x[j])^2)/(2*h*h))
t[i]=s[i]
}
for(i
in
1:n)
y[i]=t[i]/(n*h*sqrt(2*pi))
z=complex(re=x,im=y)
hist(x,freq=FALSE)
lines(z)
}
ker.density(data,0.8)
ker.density=function(x,h){
48作图如下:作图如下:49最后说一个R的内置函数density()。其实我觉得如果不是为了简要介绍核密度估计的一些常识我们完全可以只学会这个函数先看看函数的基本用法:density(x,...)##DefaultS3method:最后说一个R的内置函数density()。其实我觉得如果不是50density(x,bw="nrd0",adjust=1,
kernel=c("gaussian","epanechnikov","rectangular",
"triangular","biweight",
"cosine","optcosine"),
weights=NULL,window=kernel,width,
give.Rkern=FALSE,
n=512,from,to,cut=3,na.rm=FALSE,...)
density(x,bw="nrd0",adjust51对重要参数做出较为详细的说明:X:我们要进行核密度估计的数据Bw:窗宽,这里可以由我们自己制定,也可以使用默认的办法nrd0:BandwidthselectorsforGaussiankernels。我们还可以使用bw.SJ(x,nb=1000,lower=0.1*hmax,upper=hmax,
method=c("ste","dpi"),tol=0.1*lower),这里的method=”dpi”就是前面提到过的插入法,”ste”代表solve-the-equationplug-in,也是插入法的改进Kernel:核的选择Weights:对比较重要的数据采取加权处理对重要参数做出较为详细的说明:52对于上述混合正态数据data,有>density(data)
Call:
density.default(x=data)
对于上述混合正态数据data,有53Data:data(400obs.);
Bandwidth'bw'=0.8229
x
y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 快递员工培训课件
- 宠物养殖租赁合同范本
- 金属桥架合同范本
- 小学生食品安全课件
- 高低压配电工程施工承包合同
- 检验灭火器合同书
- 关于采购办公用品的申请报告与审批流程说明
- 民族局离婚协议书
- 中学生课外阅读指南观后感
- 法律咨询行业法律建议免责
- 水利水电工程单元工程施工质量验收评定表及填表说明
- 2024年广东中考道德与法治试卷答案讲解及备考指导(深度课件)
- HG+20231-2014化学工业建设项目试车规范
- HG-T 2006-2022 热固性和热塑性粉末涂料
- 公用水泵房和雨水泵房设备调试方案
- 2024年江苏农牧科技职业学院单招职业适应性测试题库附答案
- Access数据库应用技术 教案 全套 项目:1-8
- 庭院工程暂预算报价单(龙威景观)
- 教学评一体化
- 2023年全国高考体育单招考试英语试卷试题真题(精校打印版)
- 2023年四川省绵阳市中考化学试卷真题(含答案与解析)
评论
0/150
提交评论