版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
大数据分析关键技术大数据分析关键技术概述即席查询批量处理流式计算概述大数据计算分析模式分类即席查询Ad-HocQuery批量处理Batch
ProcessingMap/Reduce流式计算Stream
Computing数据承载响应时间适用场景磁盘秒级(准实时)自然人交互式经营分析磁盘分钟级至小时级(准实时)事前/事后大批量数据处理内存(事件窗口非全量数据)秒级(实时)实时事件分析实时风险干预针对不同的业务领域,需要采用不同的数据计算分析方式,快速发现数据价值。大数据计算分析模式分类即席查询批量处理流式计算数据承载响应时即席查询即席查询(AdHoc)是用户根据自己的需求,灵活的选择查询条件,系统能够根据用户的选择生成相应的统计报表。即席查询与普通应用查询最大的不同是普通的应用查询是定制开发的,而即席查询是用户自定义查询条件。即席查询StorageDistribute
File
SystemColumn
DatabaseResource
ManagementParallelCompute
FrameworkSQL
Syntax+
Compute
FrameworkSQL
SyntaxMetaDataBatch
ProcessingAd-Hoc
Query实时性:高即席查询即席查询(AdHoc)是用户根据自己的需求,灵活的批量处理StorageDistribute
File
SystemColumn
DatabaseResource
ManagementParallelCompute
FrameworkSQL
Syntax+
Compute
FrameworkSQL
SyntaxMetaDataBatch
ProcessingAd-Hoc
QueryMapReduce是一种编程模型,用于大规模数据集的并行批量计算。概念Map和Reduce当前的主流实现是指定一个Map函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce函数,用来保证所有映射的键值对中的每一个共享相同的键组。形成这种模型的原因是:数据的分布式存储、计算资源的分布式、并行计算减少计算时长。批量处理实时性:低批量处理StorageDistributeFileSys流式计算流数据的实时计算注重对流数据的快速高效处理、计算和分析。其特点是计算过程数据不落地,所有数据在内存中完成。其计算模型是根据规则生成容器,当数据流经过容器时,实时产生分析结果。流式计算InputAdapterOutputAdapterEngine
ClusterClusterManagementRule
RepositoryNoSQL实时性:高流式计算流数据的实时计算注重对流数据的快速高效处理、计算和分概述即席查询批量处理流式计算概述Impala
NodeImpala架构ImpaladQueryPlannerQueryCoordinatorQueryExec
EngineCommon
HiveQL
&
InterfaceMetaDataSQLJDBCHiveMetaStoreHDFSNNStateStoreImpaladQueryPlannerQueryCoordinatorQueryExec
EngineImpaladQueryPlannerQueryCoordinatorQueryExec
EngineDataHDFS
DNHBaseDataHDFS
DNHBaseDataHDFS
DNHBaseImpala
NodeImpala
NodeLocal
Direct
ReadsThriftImpalaNodeImpala架构ImpaladQuerHive架构DataHDFS
DNTask
TrackerJob
TrackerName
NodeHadoopHive(OverHadoop0.20.X)SQLJDBCWUIThrift
ServerDriver(Compiler,
Optimizer,
Executor)Meta
StoreThriftServer:JDBC通过ThriftServer连接到Hive。ThriftServer连接MetaStore来读取hive的元数据信息。MetaStore:在关系型数据库中存放表/分区/列元数据,可以低延迟的快速的访问到需要的元数据信息。Driver/QueryCompiler/ExecutionEngine:客户端提交的HiveSQL首先进入Driver,然后Driver会为此次HiveSQL的执行创建一个Session,Driver维护整个session的生命周期。Driver首先将HiveSQL传送给QueryCompiler,然后由QueryCompiler来对用户提交的HiveSQL进行编译/检查/优化并最终生成MapReduce任务。ExecutionEngine会与Hadoop进行交互,将MapReduce任务交给Hadoop来执行,并从Hadoop取得最终的执行结果,并返回给用户。解析HiveSQL之后生成所MapReduce任务,在运行中访问元数据信息时,将直接读取生成的物理计划时产生的plan.xml,此文件会被放入Hadoop的分布式缓存中,,MapReduce任务可以从分布式缓存中获得相应的元数据。Hive架构DataHDFSDNTaskTrackerJImpala相对于Hive的优势Impala不需要把中间结果写入磁盘,省掉了大量的I/O开销。省掉了MapReduce作业启动的开销。MapReduce启动task的速度很慢(默认每个心跳间隔是3秒钟),Impala直接通过相应的服务进程来进行作业调度,速度快了很多。
Impala借鉴了MPP并行数据库的思想,可以做更多的查询优化,从而省掉不必要的shuffle、sort等开销。使用了支持Datalocality的I/O调度机制,尽可能地将数据和计算分配在同一台机器上进行,减少了网络开销。用C++实现,做了很多有针对性的硬件优化。对外提供多语言API、多种访问协议。中间结果作业调度作业分发数据访问代码实现Impala相对于Hive的优势Impala不需要把中间结果概述即席查询批量处理流式计算概述MapReduce
v0.23.x
(YARN)Node
ManagerContainerApp
MasterNode
ManagerContainerApp
MasterNode
ManagerContainerResource
ManagerClientClientJob
SubmissionContainerMapReduce
StatusResource
RequestNode
Status从0.23.0版本开始,Hadoop的MapReduce框架完全重构。新的HadoopMapReduce框架命名为MapReduceV2——YARNMapReducev0.23.x(YARN)NodeM概述即席查询批量处理流式计算Primeton
CEPStorm概述流数据处理技术对比传统规则引擎(概念)维度流数据处理技术传统规则引擎处理方式“窗口模式”多维关联分析基于对属性的判断处理模型富状态无状态异常处理内存状态数据的自动化恢复服务无状态,数据重跑简单举例每种硬币各有多少个对硬币进行分类按时间区间、按长度区间、按时间与长度混合区间、按特有属性值等规则所建立起的对象集合,存放在内存中。若动画中,再对已分类的硬币进行自动打包,有两种方式:1.判断槽中的硬币数量,触发打包动作;2.判断槽中的硬币重量,触发打包动作;窗口模式如动画中对硬币的分拣动作:可以根据硬币的物理属性设计不同的判断规则(轨道宽度,转角等),完成分类。决策判断流数据处理技术对比传统规则引擎(概念)维度流数据处理技术普元CEP平台架构事件采集层AgentAgentAgentAgent外部系统系统A系统B系统C系统D接入层Input
Cluster
1…n分析引擎平台结果执行层规则库分析引擎OSGiBased…分析引擎OSGiBased接入层Output
Cluster
1…n分析规则开发(离线开发)规则开发IDE(Eclipse
Based)ActionActionActionAction应用门户(功能松耦合)管理门户(规则模板生命周期管理)运维门户(引擎监控、全局配置、自动化部署)业务门户(规则实例业务参数配置)分析集群运行环境管理控制环境普元CEP平台架构事件采集层AgentAgentAgentA普元CEP平台特色基于云计算PaaS架构分布式集群管控框架系统级物理主机/虚拟机管理进程级服务实例管理集群配置分析规则热更新/热部署与虚拟机镜像结合分析服务快速部署与规则库结合规则插件快速部署集群通知渠道规则实例快速应用自动化、图形化运维事件分析平台面向数据流基于内存内存状态数据迁移冷热数据分离与恢复集群规模水平伸缩事件动态路由分析规则开发、管理与应用规则模板开发IDE事件元数据类SQL规则语言Action元数据Web规则实例配置与热部署Web规则模板管理普元CEP平台特色基于云计算PaaS架构系统级进程级集群配置分布式集群管控框架AnyOS持久化集群AMQP
MQ集群ZooKeeper
集群Web控制台(无状态,多实例)负载均衡(SessionSticky)物理/逻辑拓扑规则模板模板状态规则实例监控业务进程(过滤/聚合)(SupportZKClient)ZKClientOS(SupportNodeJS)监控业务进程(过滤/聚合)(unSupportZKClient)ProcessDaemon(NodeJS+ZKClient)OS(unSupportNodeJS)监控业务进程(过滤/聚合)(unSupportZKClient)ProcessDaemon(Java+ZKClient)OSAgent(NodeJS+ZKClient+MQClient)OSAgent(NodeJS+ZKClient+MQClient)OSAgent(Java+ZKClient+MQClient)管控服务ZK客户端DB客户端MQ客户端分布式集群管控框架AnyOS持久化集群AMQPMQ集群规则部署与配置场景运维人员Repository业务Console业务人员DBCEPEngine1CEPEngine2CEPEngine3ZooKeeper3.下载规则的表单页面2.保存规则到仓库运维Console4.规则参数配置5.保存规则参数配置6.保存规则参数配置到ZooKeeperengine1Rule1Rule2Rule3engine2Rule4engines7.通知Engine1.上传规则部署包8.下载规则2’.保存规则信息到DB规则部署与配置场景运维人员Repository业务Conso接出层分析引擎接入层分析引擎A规则实例A1规则实例A2规则实例An规则实例A3分析引擎B事件路由1事件路由p事件路由…事件去重1事件去重q事件去重…NoSQL负载均衡(可选)事件输入事件输出集群管理MQMQ事件分析规则1:n分析引擎实例n:1规则规则实例B1规则实例B2规则实例Bn规则实例B3普元CEP关键技术——事件路由与去重多副本冗余增强可靠性接出层分析接入层分析引擎A规则规则规则规则分析引擎B事件路由分析引擎实例3实例4实例2普元CEP关键技术——实例状态复制接出层接入层实例1实例A1实例A2异常实例A3事件路由事件去重事件输入事件输出实例A4新增场景说明实例A2异常实例A4新增ContextContextContextContext包括最终接收事件号状态对象关键步骤1从A1或A3中选择一个实例,如A3关键步骤2将A3工作暂停,获得其Context此时A1正常工作,A2已经退出,A3暂停关键步骤3创建新的实例A4(未启动状态)将Context复制到A4中恢复A3的工作状态,启动A4关键点业务不中断事件去重完成对重复事件的过滤可靠性取决于集群内实例个数CCCD状态数据迁移与备份分析引擎实例3实例4实例2普元CEP关键技术——实例状态复制JVM普元CEP关键技术——规则实例水平迁移内存规则数事件量JVM1分析引擎事件大小容量预估模型规则实例m事件*状态*分布式集群管理框架规则实例n事件*状态*规则实例x事件*状态*NoSQL(MongoDB)JVM1规则实例m事件*状态*规则实例x事件*状态*JVM2规则实例x事件*状态*运行期实时监控系统容量扩展JVM普元CEP关键技术——规则实例水平迁移内存规则数事件量普元CEP关键技术——基于OSGi的规则部署包规则库目录结构和导出规则部署包的目录结构一致,方便部署和下载CEPEngine规则库的目录结构与console的规则库目录结构区别在于web目录。一个rule目录作为一个OSGi的bundlerulesJavapackageclassesrule1.ruleepseps1.epslib3rd1.jarAction1.classExtFunc.classrule1eventSourceevent1.eventevent2.eventwebform1.jsprule2Listener1.classMETA-INFMANIFEST.MFextextconfig1OSGi
Bundle规则库/部署包规则模板热部署普元CEP关键技术——基于OSGi的规则部署包规则库目录结构普元CEP
1.5平台(主机管理)普元CEP1.5平台(主机管理)普元CEP1.5平台(集群管理)普元CEP1.5平台(集群管理)普元CEP1.5平台(实例管理)普元CEP1.5平台(实例管理)普元CEP1.5平台(规则模板管理)普元CEP1.5平台(规则模板管理)普元CEP1.5平台(规则实例管理)普元CEP1.5平台(规则实例管理)普元CEP1.5平台(状态监控)普元CEP1.5平台(状态监控)普元CEP1.5平台(规则模板元数据)普元CEP1.5平台(规则模板元数据)普元CEP1.5平台(规则实例业务参数配置)普元CEP1.5平台(规则实例业务参数配置)普元CEP1.5平台(规则包)普元CEP1.5平台(规则包)概述即席查询批量处理流式计算Primeton
CEPStorm概述Storm基本概念StreamSpoutBoltStreaming
GroupingTaskWork消息流,一个无尽的Tuple序列。Topology规则拓扑,由多个Spout和Bolt组成。消息发送器,区分可靠与不可靠。消息处理器,业务逻辑载体,多入多出。消息分组方式,数据进入Blot的策略。工作任务,可以是Spout或Blot。工作进程,当JVM且执行Topology的一部分。Storm基本概念StreamSpoutBoltStreamStorm集群组件主控节点运行一个被称为Nimbus的后台程序,它负责在Storm集群内分发代码,分配任务给工作机器,并且负责监控集群运行状态。工作节点运行一个被称为Supervisor的后台程序。Supervisor负责监听从Nimbus分配给它执行的任务,并启动或停止执行任务的工作进程(Worker)。每一个工作进程(Worker)执行一个Topology的子集。Nimbus和Supervisor节点之间所有的协调工作是通过Zookeeper集群来实现的。此外,Nimbus和Supervisor进程都是无状态的。节点间信令ZooKeeper用ZeroMQ作为底层消息队列,使消息能快速被处理。数据传递ZeroMQStorm集群组件主控节点运行一个被称为Nimbus的后台程Storm可靠性原则保证每个Tuple被Topology完整执行。每个Tuple经过Spout/Blot后,形成一个消息树。消息树Emit通知新Tuple生成,
Ack通知Tuple处理完毕。生命周期超时每个Tuple都包含一个超时时间,超时后会进行重发。消息树跟踪对Topology中每个Tuple的唯一ID进行异或计算。每个Blot/Spout作为单独进程,内部包含状态数据。进程的异常退出将导致数据丢失。问题Storm可靠性原则保证每个Tuple被Topology完整Storm对比Hadoop
MRHadoop
MRStorm主控节点JobTrackerNimbus工作节点TaskTrackerSupervisor工作容器ChildWorker规则JobTopology原语Map/ReduceSpout/Blot开发方式Java,etc.
CodingJava,etc.
Coding面向领域事前/事后分析事中准实时分析Storm对比HadoopMRHadoopMRStoStorm对比普元CEP普元CEPStorm开发语言与环境EPL/Java,Eclipse
IDEJava工作模式单节点、多节点级联分布式高可用方案多副本冗余+消息连续性保障消息树跟踪开发场景类SQL
EPL开发数据源定义业务表单设计规则部署包导出精通Java开发人员的业务人员运维场景规则多版本管理OSGi代码热部署进程级、VM级资源池管理无业务参数配置Web图形化表单热更新命令行参数传递无法热更新Storm对比普元CEP普元CEPStorm开发语言与环谢谢!谢谢!大数据分析关键技术大数据分析关键技术概述即席查询批量处理流式计算概述大数据计算分析模式分类即席查询Ad-HocQuery批量处理Batch
ProcessingMap/Reduce流式计算Stream
Computing数据承载响应时间适用场景磁盘秒级(准实时)自然人交互式经营分析磁盘分钟级至小时级(准实时)事前/事后大批量数据处理内存(事件窗口非全量数据)秒级(实时)实时事件分析实时风险干预针对不同的业务领域,需要采用不同的数据计算分析方式,快速发现数据价值。大数据计算分析模式分类即席查询批量处理流式计算数据承载响应时即席查询即席查询(AdHoc)是用户根据自己的需求,灵活的选择查询条件,系统能够根据用户的选择生成相应的统计报表。即席查询与普通应用查询最大的不同是普通的应用查询是定制开发的,而即席查询是用户自定义查询条件。即席查询StorageDistribute
File
SystemColumn
DatabaseResource
ManagementParallelCompute
FrameworkSQL
Syntax+
Compute
FrameworkSQL
SyntaxMetaDataBatch
ProcessingAd-Hoc
Query实时性:高即席查询即席查询(AdHoc)是用户根据自己的需求,灵活的批量处理StorageDistribute
File
SystemColumn
DatabaseResource
ManagementParallelCompute
FrameworkSQL
Syntax+
Compute
FrameworkSQL
SyntaxMetaDataBatch
ProcessingAd-Hoc
QueryMapReduce是一种编程模型,用于大规模数据集的并行批量计算。概念Map和Reduce当前的主流实现是指定一个Map函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce函数,用来保证所有映射的键值对中的每一个共享相同的键组。形成这种模型的原因是:数据的分布式存储、计算资源的分布式、并行计算减少计算时长。批量处理实时性:低批量处理StorageDistributeFileSys流式计算流数据的实时计算注重对流数据的快速高效处理、计算和分析。其特点是计算过程数据不落地,所有数据在内存中完成。其计算模型是根据规则生成容器,当数据流经过容器时,实时产生分析结果。流式计算InputAdapterOutputAdapterEngine
ClusterClusterManagementRule
RepositoryNoSQL实时性:高流式计算流数据的实时计算注重对流数据的快速高效处理、计算和分概述即席查询批量处理流式计算概述Impala
NodeImpala架构ImpaladQueryPlannerQueryCoordinatorQueryExec
EngineCommon
HiveQL
&
InterfaceMetaDataSQLJDBCHiveMetaStoreHDFSNNStateStoreImpaladQueryPlannerQueryCoordinatorQueryExec
EngineImpaladQueryPlannerQueryCoordinatorQueryExec
EngineDataHDFS
DNHBaseDataHDFS
DNHBaseDataHDFS
DNHBaseImpala
NodeImpala
NodeLocal
Direct
ReadsThriftImpalaNodeImpala架构ImpaladQuerHive架构DataHDFS
DNTask
TrackerJob
TrackerName
NodeHadoopHive(OverHadoop0.20.X)SQLJDBCWUIThrift
ServerDriver(Compiler,
Optimizer,
Executor)Meta
StoreThriftServer:JDBC通过ThriftServer连接到Hive。ThriftServer连接MetaStore来读取hive的元数据信息。MetaStore:在关系型数据库中存放表/分区/列元数据,可以低延迟的快速的访问到需要的元数据信息。Driver/QueryCompiler/ExecutionEngine:客户端提交的HiveSQL首先进入Driver,然后Driver会为此次HiveSQL的执行创建一个Session,Driver维护整个session的生命周期。Driver首先将HiveSQL传送给QueryCompiler,然后由QueryCompiler来对用户提交的HiveSQL进行编译/检查/优化并最终生成MapReduce任务。ExecutionEngine会与Hadoop进行交互,将MapReduce任务交给Hadoop来执行,并从Hadoop取得最终的执行结果,并返回给用户。解析HiveSQL之后生成所MapReduce任务,在运行中访问元数据信息时,将直接读取生成的物理计划时产生的plan.xml,此文件会被放入Hadoop的分布式缓存中,,MapReduce任务可以从分布式缓存中获得相应的元数据。Hive架构DataHDFSDNTaskTrackerJImpala相对于Hive的优势Impala不需要把中间结果写入磁盘,省掉了大量的I/O开销。省掉了MapReduce作业启动的开销。MapReduce启动task的速度很慢(默认每个心跳间隔是3秒钟),Impala直接通过相应的服务进程来进行作业调度,速度快了很多。
Impala借鉴了MPP并行数据库的思想,可以做更多的查询优化,从而省掉不必要的shuffle、sort等开销。使用了支持Datalocality的I/O调度机制,尽可能地将数据和计算分配在同一台机器上进行,减少了网络开销。用C++实现,做了很多有针对性的硬件优化。对外提供多语言API、多种访问协议。中间结果作业调度作业分发数据访问代码实现Impala相对于Hive的优势Impala不需要把中间结果概述即席查询批量处理流式计算概述MapReduce
v0.23.x
(YARN)Node
ManagerContainerApp
MasterNode
ManagerContainerApp
MasterNode
ManagerContainerResource
ManagerClientClientJob
SubmissionContainerMapReduce
StatusResource
RequestNode
Status从0.23.0版本开始,Hadoop的MapReduce框架完全重构。新的HadoopMapReduce框架命名为MapReduceV2——YARNMapReducev0.23.x(YARN)NodeM概述即席查询批量处理流式计算Primeton
CEPStorm概述流数据处理技术对比传统规则引擎(概念)维度流数据处理技术传统规则引擎处理方式“窗口模式”多维关联分析基于对属性的判断处理模型富状态无状态异常处理内存状态数据的自动化恢复服务无状态,数据重跑简单举例每种硬币各有多少个对硬币进行分类按时间区间、按长度区间、按时间与长度混合区间、按特有属性值等规则所建立起的对象集合,存放在内存中。若动画中,再对已分类的硬币进行自动打包,有两种方式:1.判断槽中的硬币数量,触发打包动作;2.判断槽中的硬币重量,触发打包动作;窗口模式如动画中对硬币的分拣动作:可以根据硬币的物理属性设计不同的判断规则(轨道宽度,转角等),完成分类。决策判断流数据处理技术对比传统规则引擎(概念)维度流数据处理技术普元CEP平台架构事件采集层AgentAgentAgentAgent外部系统系统A系统B系统C系统D接入层Input
Cluster
1…n分析引擎平台结果执行层规则库分析引擎OSGiBased…分析引擎OSGiBased接入层Output
Cluster
1…n分析规则开发(离线开发)规则开发IDE(Eclipse
Based)ActionActionActionAction应用门户(功能松耦合)管理门户(规则模板生命周期管理)运维门户(引擎监控、全局配置、自动化部署)业务门户(规则实例业务参数配置)分析集群运行环境管理控制环境普元CEP平台架构事件采集层AgentAgentAgentA普元CEP平台特色基于云计算PaaS架构分布式集群管控框架系统级物理主机/虚拟机管理进程级服务实例管理集群配置分析规则热更新/热部署与虚拟机镜像结合分析服务快速部署与规则库结合规则插件快速部署集群通知渠道规则实例快速应用自动化、图形化运维事件分析平台面向数据流基于内存内存状态数据迁移冷热数据分离与恢复集群规模水平伸缩事件动态路由分析规则开发、管理与应用规则模板开发IDE事件元数据类SQL规则语言Action元数据Web规则实例配置与热部署Web规则模板管理普元CEP平台特色基于云计算PaaS架构系统级进程级集群配置分布式集群管控框架AnyOS持久化集群AMQP
MQ集群ZooKeeper
集群Web控制台(无状态,多实例)负载均衡(SessionSticky)物理/逻辑拓扑规则模板模板状态规则实例监控业务进程(过滤/聚合)(SupportZKClient)ZKClientOS(SupportNodeJS)监控业务进程(过滤/聚合)(unSupportZKClient)ProcessDaemon(NodeJS+ZKClient)OS(unSupportNodeJS)监控业务进程(过滤/聚合)(unSupportZKClient)ProcessDaemon(Java+ZKClient)OSAgent(NodeJS+ZKClient+MQClient)OSAgent(NodeJS+ZKClient+MQClient)OSAgent(Java+ZKClient+MQClient)管控服务ZK客户端DB客户端MQ客户端分布式集群管控框架AnyOS持久化集群AMQPMQ集群规则部署与配置场景运维人员Repository业务Console业务人员DBCEPEngine1CEPEngine2CEPEngine3ZooKeeper3.下载规则的表单页面2.保存规则到仓库运维Console4.规则参数配置5.保存规则参数配置6.保存规则参数配置到ZooKeeperengine1Rule1Rule2Rule3engine2Rule4engines7.通知Engine1.上传规则部署包8.下载规则2’.保存规则信息到DB规则部署与配置场景运维人员Repository业务Conso接出层分析引擎接入层分析引擎A规则实例A1规则实例A2规则实例An规则实例A3分析引擎B事件路由1事件路由p事件路由…事件去重1事件去重q事件去重…NoSQL负载均衡(可选)事件输入事件输出集群管理MQMQ事件分析规则1:n分析引擎实例n:1规则规则实例B1规则实例B2规则实例Bn规则实例B3普元CEP关键技术——事件路由与去重多副本冗余增强可靠性接出层分析接入层分析引擎A规则规则规则规则分析引擎B事件路由分析引擎实例3实例4实例2普元CEP关键技术——实例状态复制接出层接入层实例1实例A1实例A2异常实例A3事件路由事件去重事件输入事件输出实例A4新增场景说明实例A2异常实例A4新增ContextContextContextContext包括最终接收事件号状态对象关键步骤1从A1或A3中选择一个实例,如A3关键步骤2将A3工作暂停,获得其Context此时A1正常工作,A2已经退出,A3暂停关键步骤3创建新的实例A4(未启动状态)将Context复制到A4中恢复A3的工作状态,启动A4关键点业务不中断事件去重完成对重复事件的过滤可靠性取决于集群内实例个数CCCD状态数据迁移与备份分析引擎实例3实例4实例2普元CEP关键技术——实例状态复制JVM普元CEP关键技术——规则实例水平迁移内存规则数事件量JVM1分析引擎事件大小容量预估模型规则实例m事件*状态*分布式集群管理框架规则实例n事件*状态*规则实例x事件*状态*NoSQL(MongoDB)JVM1规则实例m事件*状态*规则实例x事件*状态*JVM2规则实例x事件*状态*运行期实时监控系统容量扩展JVM普元CEP关键技术——规则实例水平迁移内存规则数事件量普元CEP关键技术——基于OSGi的规则部署包规则库目录结构和导出规则部署包的目录结构一致,方便部署和下载CEPEngine规则库的目录结构与console的规则库目录结构区别在于web目录。一个rule目录作为一个OSGi的bundlerulesJavapackageclassesrule1.ruleepseps1.epslib3rd1.jarAction1.classExtFunc.classrule1eventSourceevent1.eventevent2.eventwebform1.jsprule2Listener1.classMETA-INFMANIFEST.MFextextconfig1OSGi
Bundle规则库/部署包规则模板热部署普元CEP关键技术——基于OSGi的规则部署包规则库目录结构普元CEP
1.5平台(主机管理)普元CEP1.5平台(主机管理)普元CEP1.5平台(集群管理)普元CEP1.5平台(集群管理)普元CEP1.5平台(实例管理)普元CEP1.5平台(实例管理)普元CEP1.5平台(规则模板管理)普元CEP1.5平台(规则模板管理)普元CEP1.5平台(规则实例管理)普元CEP1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年水果订购合同
- 2024年兰州客运资格从业证考试
- 2024年挖掘机买卖的合同范本
- 2024年安阳客运从业资格证考试
- 2024年铜川客运资格证摸拟考试题
- 2024年宿迁客运从业资格证理论考试题
- 悬溺 高清钢琴谱五线谱
- 2024年辽源客运从业资格证模拟考
- 《网络通信遵规则》课件2024-2025学年人教版(2024)初中信息科技七年级全一册
- 2024年扬州办理客运从业资格证考试题和答案
- GB/T 15822.1-2024无损检测磁粉检测第1部分:总则
- 2024年反洗钱知识竞赛参考题库400题(含答案)
- SLT824-2024 水利工程建设项目文件收集与归档规范
- 七年级语文人教部编版(上册)《课外古诗词诵读》之《行军九日思长安故园》课件(26张)
- 2024广西专业技术人员继续教育公需科目参考答案(100分)
- 人民调解员业务培训讲稿
- 2024年日历表(空白)(一月一张-可编辑做工作日历)
- 2023-2024学年湖北省武汉市洪山区九年级(上)期中数学试卷(含解析)
- 国开2022年春季《小学数学教学研究》形考任务1-4题库及答案
- 《说文解字序》及翻译
- 开展溺水教育的六个一活动-防溺水活动
评论
0/150
提交评论