版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.InverserelationDefinition2.13:LetRbearelationfromAtoB.TheinverserelationofRisarelationfromBtoA,wewriteR-1,definedbyR-1={(b,a)|(a,b)R}2.4OperationsonRelations
1Theorem2.1:LetR,R1,andR2berelationfromAtoB.Then(1)(R-1)-1=R;(2)(R1∪R2)-1=R1-1∪R2-1;(3)(R1∩R2)-1=R1-1∩R2-1;(4)(A×B)-1=B×A;(5)-1=;(7)(R1-R2)-1=R1-1-R2-1(8)IfR1R2thenR1-1R2-12Theorem2.2:LetRbearelationonA.ThenRissymmetricifonlyifR=R-1.Proof:(1)IfRissymmetric,thenR=R-1。RR-1andR-1R。(2)IfR=R-1,thenRissymmetricForany(a,b)R,(b,a)?R
32.CompositionDefinition2.14:LetR1bearelationfromAtoB,andR2bearelationfromBtoC.ThecompositionofR1andR2,wewriteR2R1,isarelationfromAtoC,andisdefinedR2R1={(a,c)|thereexistsomebBsothat(a,b)R1and(b,c)R2,whereaAandcC}.(1)R1isarelationfromAtoB,andR2isarelationfromBtoC(2)commutativelaw?
R1={(a1,b1),(a2,b3),(a1,b2)}R2={(b4,a1),(b4,c1),(b2,a2),(b3,c2)}
4Associativelaw?ForR1
A×B,R2B×C,andR3C×DR3(R2R1)=?(R3R2)R1subsetofA×DForany(a,d)R3(R2R1),(a,d)?(R3R2)R1,Similarity,(R3R2)R1R3(R2R1)Theorem2.3:LetR1bearelationfromAtoB,R2bearelationfromBtoC,R3bearelationfromCtoD.ThenR3(R2R1)=(R3R2)R1(Associativelaw)5Definition2.15:Let
RbearelationonA,andnN.TherelationRnisdefinedasfollows.(1)R0={(a,a)|aA}),wewriteIA.(2)Rn+1=RRn.Theorem2.4:Let
RbearelationonA,andm,nN.Then(1)RmRn=Rm+n(2)(Rm)n=Rmn6A={a1,a2,,an},B={b1,b2,,bm}R1andR2berelationsfromAtoB.MR1=(xij),MR2=(yij)MR1∪R2=(xijyij)MR1∩R2=(xijyij)01010
010
001
111
01Example:A={2,3,4},B={1,3,5,7}R1={(2,3),(2,5),(2,7),(3,5),(3,7),(4,5),(4,7)}R2={(2,5),(3,3),(4,1),(4,7)}InverserelationR-1ofR:MR-1=MRT,MRTisthetransposeofMR.7A={a1,a2,,an},B={b1,b2,,bm},C={c1,c2,,cr},R1bearelationsfromAtoB,MR1=(xij)mn,R2bearelationfromBtoC,MR2=(yij)nr.ThecompositionR2R1ofR1andR2,8Example:R={(a,b),(b,a),(a,c)},isnotsymmetric+(c,a),R'={(a,b),(b,a),(a,c),(c,a)},R'
issymmetric.Closure92.5ClosuresofRelations1.IntroductionConstruct
anewrelationR‘,
s.t.RR’,
particularproperty,smallestrelationclosureDefinition2.17:LetRbearelationonasetA.R'iscalledthereflexive(symmetric,transitive)closureofR,wewriter(R)(s(R),t(R)orR+),ifthereisarelationR'withreflexivity(symmetry,transitivity)containingRsuchthatR'isasubsetofeveryrelationwithreflexivity(symmetry,transitivity)containingR.10Condition:1)R'isreflexivity(symmetry,transitivity)2)RR'3)Foranyreflexive(symmetric,transitive)relationR",IfRR",thenR'R"Example:IfRissymmetric,s(R)=?IfRissymmetric,thens(R)=RContrariwise,Ifs(R)=R,thenRissymmetricRissymmetricifonlyifs(R)=RTheorem2.5:LetRbearelationonasetA.Then(1)Risreflexiveifonlyifr(R)=R(2)Rissymmetricifonlyifs(R)=R(3)Ristransitiveifonlyift(R)=R11Theorem2.6:LetR1andR2berelationsonA,andR1R2.Then(1)r(R1)r(R2);(2)s(R1)s(R2);(3)t(R1)t(R2)。Proof:(3)R1R2t(R1)t(R2)BecauseR1R2,R1t(R2)t(R2):transitivity12Example:LetA={1,2,3},R={(1,2),(1,3)}.Then2.ComputingclosuresTheorem2.7:LetRbearelationonasetA,andIAbeidentity(diagonal)relation.Thenr(R)=R∪IA(IA={(a,a)|aA})Proof:LetR'=R∪IA.Definitionofclosure(1)ForanyaA,(a,a)?R'.(2)R?R'.(3)SupposethatR''isreflexiveandRR'',R'?R''13Theorem2.8:LetRbearelationonasetA.Thens(R)=R∪R-1.Proof:LetR'=R∪R-1Definitionofclosure(1)R',symmetric?(2)R?R'.(3)SupposethatR''issymmetricandRR'',R'?R'')14Example:symmetricclosureof“<”onthesetofintegers,is“≠”<,>,LetAisnoemptyset.ThereflexiveclosureofemptyrelationonAistheidentityrelationonAThesymmetricclosureofemptyrelationonA,isanemptyrelation.15Theorem2.9:LetRbearelationonA.Then
Theorem2.10:LetAbeasetwith|A|=n,andletRbearelation
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45074-2024公共机构废旧商品回收体系管理规范
- 课堂纪律与规范管理措施计划
- 许昌学院《数据库原理与技术实验》2023-2024学年第一学期期末试卷
- 融资渠道的选择与管理计划
- 生物学科资源共享平台建设计划
- 项目启动会议总结计划
- 期权开仓授权协议三篇
- 餐饮行业服务质量提升的个人计划
- 信阳师范大学《数据结构实验》2021-2022学年第一学期期末试卷
- 西南医科大学《单片机原理与应用》2022-2023学年第一学期期末试卷
- GA 1811.1-2022传媒设施反恐怖防范要求第1部分:媒体机构
- 旅游消费者行为智慧树知到答案章节测试2023年泰山学院
- 灌注桩接桩规范
- 小区智能化维保方案
- 新苏教版小学科学二年级上册学生活动手册答案
- 云南省2023年7月普通高中学业水平考试物理试卷(含答案)
- 交管12123学法减分题库大全(附答案)
- GB/T 10051.3-2010起重吊钩第3部分:锻造吊钩使用检查
- 《中药竹罐治疗颈椎病的应用进展综述【3000字论文】》
- 人生安全和财产安全保护课件
- MBTI16种类型性格课件
评论
0/150
提交评论