2023届江苏省江阴市澄西片重点中学中考数学押题试卷含答案解析_第1页
2023届江苏省江阴市澄西片重点中学中考数学押题试卷含答案解析_第2页
2023届江苏省江阴市澄西片重点中学中考数学押题试卷含答案解析_第3页
2023届江苏省江阴市澄西片重点中学中考数学押题试卷含答案解析_第4页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届江苏省江阴市澄西片重点中学中考数学押题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在实数,,,中,其中最小的实数是()A. B. C. D.2.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为()A.7 B. C. D.93.下列说法:①-102②数轴上的点与实数成一一对应关系;③﹣2是16的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有()A.2个 B.3个 C.4个 D.5个4.把不等式组的解集表示在数轴上,正确的是()A. B.C. D.5.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()A. B. C. D.6.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80° B.左转80° C.右转100° D.左转100°7.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是()A. B.C. D.8.点A(-2,5)关于原点对称的点的坐标是()A.(2,5)B.(2,-5)C.(-2,-5)D.(-5,-2)9.下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=010.平面直角坐标系内一点关于原点对称点的坐标是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.点(-1,a)、(-2,b)是抛物线上的两个点,那么a和b的大小关系是a_______b(填“>”或“<”或“=”).12.已知抛物线y=-x2+mx+2-m,在自变量x的值满足-1≤x≤2的情况下.若对应的函数值y的最大值为6,则m的值为__________.13.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.14.株洲市城区参加2018年初中毕业会考的人数约为10600人,则数10600用科学记数法表示为_____.15.如图,已知△ABC中,AB=AC=5,BC=8,将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m的值是______.16.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.17.已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果a<b<0,那么y1与y2的大小关系是:y1__y2;三、解答题(共7小题,满分69分)18.(10分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?19.(5分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?20.(8分)计算:÷(﹣1)21.(10分)如图,在△ABC中,BD平分∠ABC,AE⊥BD于点O,交BC于点E,AD∥BC,连接CD.(1)求证:AO=EO;(2)若AE是△ABC的中线,则四边形AECD是什么特殊四边形?证明你的结论.22.(10分)综合与探究:如图,已知在△ABC中,AB=AC,∠BAC=90°,点A在x轴上,点B在y轴上,点在二次函数的图像上.(1)求二次函数的表达式;(2)求点A,B的坐标;(3)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积.23.(12分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)24.(14分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.

2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【答案解析】

由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.【题目详解】解:∵0,-2,1,中,-2<0<1<,

∴其中最小的实数为-2;

故选:B.【答案点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.2、B【答案解析】

作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=.【题目详解】解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易证△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:设AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).∴CD=.故选B.3、C【答案解析】

根据平方根,数轴,有理数的分类逐一分析即可.【题目详解】①∵-102=10,∴②数轴上的点与实数成一一对应关系,故说法正确;③∵16=4,故-2是16的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如2和-2⑥无理数都是无限小数,故说法正确;故正确的是②③④⑥共4个;故选C.【答案点睛】本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如2,4、A【答案解析】

分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.【题目详解】由①,得x≥2,

由②,得x<1,

所以不等式组的解集是:2≤x<1.

不等式组的解集在数轴上表示为:

故选A.【答案点睛】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5、D【答案解析】

根据一次函数的性质结合题目中的条件解答即可.【题目详解】解:由题可得,水深与注水量之间成正比例关系,∴随着水的深度变高,需要的注水量也是均匀升高,∴水瓶的形状是圆柱,故选:D.【答案点睛】此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.6、A【答案解析】

60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选A.7、A【答案解析】分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.详解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:.故选A.点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.8、B【答案解析】

根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).【题目详解】根据中心对称的性质,得点P(−2,5)关于原点对称点的点的坐标是(2,−5).故选:B.【答案点睛】考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).9、D【答案解析】

分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【题目详解】A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.故选D.10、D【答案解析】

根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.【题目详解】解:根据关于原点对称的点的坐标的特点,∴点A(-2,3)关于原点对称的点的坐标是(2,-3),故选D.【答案点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.二、填空题(共7小题,每小题3分,满分21分)11、<【答案解析】把点(-1,a)、(-2,b)分别代入抛物线,则有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b,故答案为<.12、m=8或-【答案解析】

求出抛物线的对称轴x=-b2a=【题目详解】抛物线的对称轴x=-b当m2<-1,即m<-2时,抛物线在-1≤x≤2时,y随x的增大而减小,在x=-1时取得最大值,即y=--1当-1≤m2≤2,即-2≤m≤4时,抛物线在-1≤x≤2时,在x=当m2>2,即m>4时,抛物线在-1≤x≤2时,y随x的增大而增大,在x=2时取得最大值,即y=-2综上所述,m的值为8或-故答案为:8或-【答案点睛】考查二次函数的图象与性质,注意分类讨论,不要漏解.13、【答案解析】测试卷分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:根据勾股定理得:,由网格得:S△ABC=×2×4=4,且S△ABC=AC•BD=×5BD,∴×5BD=4,解得:BD=.考点:1.网格型问题;2.勾股定理;3.三角形的面积.14、1.06×104【答案解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:10600=1.06×104,故答案为:1.06×104【答案点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15、或5或1.【答案解析】

根据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可.【题目详解】解:如图(1)当在△ADE中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(2)又AC=5,当平移m个单位使得E、C点重合,此时AE=ED=5,平移的长度m=BC=1,(3)可以AE、AD为腰使ADE为等腰三角形,设平移了m个单位:则AN=3,AC=,AD=m,得:,得m=,综上所述:m为或5或1,所以答案:或5或1.【答案点睛】本题主要考查等腰三角形的性质,注意分类讨论的完整性.16、1【答案解析】

设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.【题目详解】设购买篮球x个,则购买足球个,根据题意得:,解得:.为整数,最大值为1.故答案为1.【答案点睛】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.17、>【答案解析】

根据反比例函数的性质求解.【题目详解】反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,而a<b<0,所以y1>y2故答案为:>【答案点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.三、解答题(共7小题,满分69分)18、原计划每天种树40棵.【答案解析】

设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少5天为等量关系建立方程求出其解即可.【题目详解】设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得−=5,解得:x=40,经检验,x=40是原方程的解.答:原计划每天种树40棵.19、(1)m=3;(2)(-1,0),(3,0)【答案解析】测试卷分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.列表得:

X

﹣1

0

1

2

1

y

0

1

2

1

0

图象如下.(2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.∴抛物线与x轴的交点为(﹣1,0),(1,0).∵y=﹣x2+2x+1=﹣(x﹣1)2+2∴抛物线顶点坐标为(1,2).(1)由图象可知:当﹣1<x<1时,抛物线在x轴上方.(2)由图象可知:当x>1时,y的值随x值的增大而减小考点:二次函数的运用20、【答案解析】

根据分式的混合运算法则把原式进行化简即可.【题目详解】原式=÷(﹣)=÷=•=.【答案点睛】本题考查的是分式的混合运算,熟知分式的混合运算的法则是解答此题的关键.21、(1)详见解析;(2)平行四边形.【答案解析】

(1)由“三线合一”定理即可得到结论;

(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根据垂直平分线的性质有AB=BE,于是AD=BE,进而得到AD=EC,根据平行四边形的判定即可得到结论.【题目详解】证明:(1)∵BD平分∠ABC,AE⊥BD,∴AO=EO;(2)平行四边形,证明:∵AD∥BC,∴∠ADB=∠ABD,∴AD=AB,∵OA=OE,OB⊥AE,∴AB=BE,∴AD=BE,∵BE=CE,∴AD=EC,∴四边形AECD是平行四边形.【答案点睛】考查等腰直角三角形的性质以及平行四边形的判定,掌握平行四边形的判定方法是解题的关键.22、(1);(2);(3).【答案解析】

(1)将点代入二次函数解析式即可;(2)过点作轴,证明即可得到即可得出点A,B的坐标;(3)设点的坐标为,解方程得出四边形为平行四边形,求出AC,AB的值,通过扫过区域的面积=代入计算即可.【题目详解】解:(1)∵点在二次函数的图象上,.解方程,得∴二次函数的表达式为.(2)如图1,过点作轴,垂足为..,.在和中,∵,.∵点的坐标为,..(3)如图2,把沿轴正方向平移,当点落在抛物线上点处时,设点的坐标为.解方程得:(舍去)或由平移的性质知,且,∴四边形为平行四边形,.扫过区域的面积==.【答案点睛】本题考查了二次函数与几何综合问题,涉及全等三角形的判定与性质,平行四边形的性质与判定,勾股定理解直角三角形,解题的关键是灵活运用二次函数的性质与几何的性质.23、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.【答案解析】

(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;(2)设安排甲型号产品生产y万只,则乙型号产

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论