2022届湖北省武汉市金银湖区中考数学模拟预测题含解析_第1页
2022届湖北省武汉市金银湖区中考数学模拟预测题含解析_第2页
2022届湖北省武汉市金银湖区中考数学模拟预测题含解析_第3页
2022届湖北省武汉市金银湖区中考数学模拟预测题含解析_第4页
2022届湖北省武汉市金银湖区中考数学模拟预测题含解析_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是()A.30° B.15° C.18° D.20°2.一次函数与二次函数在同一平面直角坐标系中的图像可能是()A. B. C. D.3.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为()A.1:2 B.1:3 C.1:4 D.1:14.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短 B.经过一点有无数条直线C.两点之间,线段最短 D.经过两点,有且仅有一条直线5.如图,点A、B、C在圆O上,若∠OBC=40°,则∠A的度数为()A.40° B.45° C.50° D.55°6.在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.17.若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠38.已知3a﹣2b=1,则代数式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣39.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A. B. C. D.10.下列图形中,既是中心对称图形又是轴对称图形的是()A. B.C. D.11.下列4个数:,,π,()0,其中无理数是()A. B. C.π D.()012.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A. B.3 C.1 D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.14.如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=_____.15.如图,以锐角△ABC的边AB为直径作⊙O,分别交AC,BC于E、D两点,若AC=14,CD=4,7sinC=3tanB,则BD=_____.16.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分那么,其中最喜欢足球的学生数占被调查总人数的百分比为____________%17.如图,已知点A(2,2)在双曲线上,将线段OA沿x轴正方向平移,若平移后的线段O'A'与双曲线的交点D恰为O'A'的中点,则平移距离OO'长为____.18.观察下列图形,若第1个图形中阴影部分的面积为1,第2个图形中阴影部分的面积为,第3个图形中阴影部分的面积为,第4个图形中阴影部分的面积为,…则第n个图形中阴影部分的面积为_____.(用字母n表示)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.20.(6分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.求BF的长.21.(6分)如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长.22.(8分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径;(3)在(2)的条件下,若点B等分半圆CD,求DE的长.23.(8分)路边路灯的灯柱垂直于地面,灯杆的长为2米,灯杆与灯柱成角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正好通过道路路面的中心线(在中心线上).已知点与点之间的距离为12米,求灯柱的高.(结果保留根号)24.(10分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台.求甲、乙两种品牌空调的进货价;该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.25.(10分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.26.(12分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.27.(12分)计算:12+(13)﹣2﹣|1﹣3|﹣(π+1)0

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】

∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.【详解】∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,

∴∠1=108°-90°=18°.故选C【点睛】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.2、D【解析】

本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.3、B【解析】

根据中位线定理得到DE∥BC,DE=BC,从而判定△ADE∽△ABC,然后利用相似三角形的性质求解.【详解】解:∵D、E分别为△ABC的边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积==1:4,∴△ADE的面积:四边形BCED的面积=1:3;故选B.【点睛】本题考查三角形中位线定理及相似三角形的判定与性质.4、C【解析】

用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.5、C【解析】

根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=12【详解】∵OB=OC,

∴∠OBC=∠OCB.

又∠OBC=40°,

∴∠OBC=∠OCB=40°,

∴∠BOC=180°-2×40°=100°,

∴∠A=12【点睛】考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.6、A【解析】

因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A.【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.7、D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.8、B【解析】

先变形,再整体代入,即可求出答案.【详解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故选:B.【点睛】本题考查了求代数式的值,能够整体代入是解此题的关键.9、C【解析】

根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.【详解】解:由题意可得,y==,当x=40时,y=6,故选C.【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.10、D【解析】

根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;D.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的定义,解题的关键是熟练的掌握中心对称图形与轴对称图形的定义.11、C【解析】=3,是无限循环小数,π是无限不循环小数,,所以π是无理数,故选C.12、A【解析】

首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】

设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.【详解】设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中,由勾股定理得:AF2=52-32=16,∴AF=4,DF=5-4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案为.14、4【解析】

由矩形的性质可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.【详解】解:如图,设AC与BD的交点为O,连接PO,

∵四边形ABCD是矩形

∴AO=CO=5=BO=DO,

∴S△DCO=S矩形ABCD=10,

∵S△DCO=S△DPO+S△PCO,

∴10=×DO×PF+×OC×PE

∴20=5PF+5PE

∴PE+PF=4

故答案为4【点睛】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.15、1【解析】如图,连接AD,根据圆周角定理可得AD⊥BC.在Rt△ADC中,sinC=ADAC;在Rt△ABD中,tanB=ADBD.已知7sinC=3tanB,所以7×ADAC=3×ADBD,又因点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键.16、1%【解析】

依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.【详解】∵被调查学生的总数为10÷20%=50人,

∴最喜欢篮球的有50×32%=16人,

则最喜欢足球的学生数占被调查总人数的百分比=×100%=1%,

故答案为:1.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.17、1.【解析】

直接利用平移的性质以及反比例函数图象上点的坐标性质得出D点坐标进而得出答案.【详解】∵点A(2,2)在双曲线上,∴k=4,∵平移后的线段O'A'与双曲线的交点D恰为O'A'的中点,∴D点纵坐标为:1,∴DE=1,O′E=1,∴D点横坐标为:x==4,∴OO′=1,故答案为1.【点睛】本题考查了反比例函数图象上的性质,正确得出D点坐标是解题关键.18、n﹣1(n为整数)【解析】试题分析:观察图形可得,第1个图形中阴影部分的面积=()0=1;第2个图形中阴影部分的面积=()1=;第3个图形中阴影部分的面积=()2=;第4个图形中阴影部分的面积=()3=;…根据此规律可得第n个图形中阴影部分的面积=()n-1(n为整数)•考点:图形规律探究题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、证明见解析.【解析】

由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.【详解】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于点C,AE⊥BD于点E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD【点睛】本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.20、BF的长度是1cm.【解析】

利用“两角法”证得△BEF∽△CDF,利用相似三角形的对应边成比例来求线段CF的长度.【详解】解:如图,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;∴=,又∵AD=BC=260cm,AB=CD=130cm,AE=60cm∴BE=70cm,CD=130cm,BC=260cm,CF=(260-BF)cm∴=,解得:BF=1.即:BF的长度是1cm.【点睛】本题主要考查相似三角形的判定和性质,关键要掌握:有两角对应相等的两三角形相似;两三角形相似,对应边的比相等.21、(1)见解析;(1)1【解析】

(1)根据角平分线的作图可得;

(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为△ABD的中位线可得.【详解】(1)如图,射线CF即为所求;(1)∵∠CAD=∠CDA,∴AC=DC,即△CAD为等腰三角形;又CF是顶角∠ACD的平分线,∴CF是底边AD的中线,即F为AD的中点,∵E是AB的中点,∴EF为△ABD的中位线,∴EF=BD=1.【点睛】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键.22、(1)证明见解析;(2);(3);【解析】

(1)连接OA、AD,如图,利用圆周角定理得到∠B=∠ADC,则可证明∠ADC=2∠ACP,利用CD为直径得到∠DAC=90°,从而得到∠ADC=60°,∠C=30°,则∠AOP=60°,于是可证明∠OAP=90°,然后根据切线的判断定理得到结论;(2)利用∠P=30°得到OP=2OA,则,从而得到⊙O的直径;(3)作EH⊥AD于H,如图,由点B等分半圆CD得到∠BAC=45°,则∠DAE=45°,设DH=x,则DE=2x,所以然后求出x即可得到DE的长.【详解】(1)证明:连接OA、AD,如图,∵∠B=2∠P,∠B=∠ADC,∴∠ADC=2∠P,∵AP=AC,∴∠P=∠ACP,∴∠ADC=2∠ACP,∵CD为直径,∴∠DAC=90°,∴∠ADC=60°,∠C=30°,∴△ADO为等边三角形,∴∠AOP=60°,而∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切线;(2)解:在Rt△OAP中,∵∠P=30°,∴OP=2OA,∴∴⊙O的直径为;(3)解:作EH⊥AD于H,如图,∵点B等分半圆CD,∴∠BAC=45°,∴∠DAE=45°,设DH=x,在Rt△DHE中,DE=2x,在Rt△AHE中,∴即解得∴【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.23、【解析】

设灯柱BC的长为h米,过点A作AH⊥CD于点H,过点B作BE⊥AH于点E,构造出矩形BCHE,Rt△AEB,然后解直角三角形求解.【详解】解:设灯柱的长为米,过点作于点过点做于点∴四边形为矩形,∵∴又∵∴在中,∴∴又∴在中,解得,(米)∴灯柱的高为米.24、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元【解析】

(1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价÷单价可得出关于x的分式方程,解之并检验后即可得出结论;(2)设购进甲种品牌空调a台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价×数量结合总价不超过16000元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润×购进数量即可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题.【详解】(1)由(1)设甲种品牌的进价为x元,则乙种品牌空调的进价为(1+20%)x元,由题意,得,解得x=1500,经检验,x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论