版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届重庆巴蜀常春藤市级名校中考测试卷猜想数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、测试卷卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,矩形是由三个全等矩形拼成的,与,,,,分别交于点,设,,的面积依次为,,,若,则的值为()A.6 B.8 C.10 D.122.如图所示,,结论:①;②;③;④,其中正确的是有()A.1个 B.2个 C.3个 D.4个3.下表是某校合唱团成员的年龄分布.年龄/岁13141516频数515x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数 B.平均数、中位数 C.平均数、方差 D.中位数、方差4.如图,圆O是等边三角形内切圆,则∠BOC的度数是()A.60° B.100° C.110° D.120°5.下列方程中有实数解的是()A.x4+16=0 B.x2﹣x+1=0C. D.6.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中的值是().A. B. C. D.7.cos30°的值为(
)A.1
B.
C.
D.8.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距离景点2100米 D.乙距离景点420米9.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是()A. B. C. D.10.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等边三角形 D.△BEF是等腰三角形11.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30° B.45°C.90° D.135°12.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数这些运动员跳高成绩的中位数是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.14.正十二边形每个内角的度数为.15.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_____.16.如果一个矩形的面积是40,两条对角线夹角的正切值是,那么它的一条对角线长是__________.17.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.18.函数y=中,自变量x的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:2﹣1+|﹣|++2cos30°20.(6分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.21.(6分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.22.(8分)如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.23.(8分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.(1)分别直接写出优惠方案一购买费用y1(元)、优惠方案二购买费用y(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.24.(10分)如图,AD是△ABC的中线,CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:AF+AE=2AD.25.(10分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)26.(12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.求抛物线的解析式;判断△ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.27.(12分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+1.设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?
2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【答案解析】
由条件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ与△DKM的相似比为,△BPQ与△CNH相似比为,由相似三角形的性质,就可以求出,从而可以求出.【题目详解】∵矩形AEHC是由三个全等矩形拼成的,
∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,
∴四边形BEFD、四边形DFGC是平行四边形,
∴BE∥DF∥CG,
∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,
∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故选:B.【答案点睛】本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键.2、C【答案解析】
根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.【题目详解】解:如图:在△AEB和△AFC中,有,∴△AEB≌△AFC;(AAS)∴∠FAM=∠EAN,∴∠EAN-∠MAN=∠FAM-∠MAN,即∠EAM=∠FAN;(故③正确)又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴EM=FN;(故①正确)由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正确)由于条件不足,无法证得②CD=DN;故正确的结论有:①③④;故选C.【答案点睛】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.3、A【答案解析】
由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【题目详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.【答案点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.4、D【答案解析】
由三角形内切定义可知OB、OC是∠ABC、∠ACB的角平分线,所以可得到关系式∠OBC+∠OCB=(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.【题目详解】解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵圆O是等边三角形内切圆,∴OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故选D.【答案点睛】此题主要考查了三角形的内切圆与内心以及切线的性质.关键是要知道关系式∠OBC+∠OCB=(∠ABC+∠ACB).5、C【答案解析】
A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.【题目详解】A.中△=02﹣4×1×16=﹣64<0,方程无实数根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;C.x=﹣1是方程的根;D.当x=1时,分母x2-1=0,无实数根.故选:C.【答案点睛】本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.6、D【答案解析】
根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.【题目详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对,故x=8,故选D.【答案点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.7、D【答案解析】cos30°=.故选D.8、D【答案解析】
根据图中信息以及路程、速度、时间之间的关系一一判断即可.【题目详解】甲的速度==70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D.【答案点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.9、D【答案解析】A选项:∠1+∠2=360°-90°×2=180°;B选项:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C选项:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D选项:∠1和∠2不一定互补.故选D.点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.10、D【答案解析】
连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.【题目详解】连接BD,∵四边形ABCD是菱形,
∴AD=AB,∠ADB=∠ADC,AB∥CD,
∵∠A=60°,
∴∠ADC=120°,∠ADB=60°,
同理:∠DBF=60°,
即∠A=∠DBF,
∴△ABD是等边三角形,
∴AD=BD,
∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
∴∠ADE=∠BDF,
∵在△ADE和△BDF中,,
∴△ADE≌△BDF(ASA),
∴DE=DF,AE=BF,故A正确;
∵∠EDF=60°,
∴△EDF是等边三角形,
∴C正确;
∴∠DEF=60°,
∴∠AED+∠BEF=120°,
∵∠AED+∠ADE=180°-∠A=120°,
∴∠ADE=∠BEF;
故B正确.
∵△ADE≌△BDF,
∴AE=BF,
同理:BE=CF,
但BE不一定等于BF.
故D错误.
故选D.【答案点睛】本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.11、C【答案解析】
根据勾股定理求解.【题目详解】设小方格的边长为1,得,OC=,AO=,AC=4,∵OC2+AO2==16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.【答案点睛】考点:勾股定理逆定理.12、C【答案解析】
根据中位数的定义解答即可.【题目详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.
所以这些运动员跳高成绩的中位数是1.1.
故选:C.【答案点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、3【答案解析】
根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【题目详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×=×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【答案点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x的方程,从而得到答案.14、【答案解析】
首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.【题目详解】测试卷分析:正十二边形的每个外角的度数是:=30°,则每一个内角的度数是:180°﹣30°=150°.故答案为150°.15、【答案解析】测试卷解析:根据图象和数据可知,当y>0即图象在x轴的上方,x>1.
故答案为x>1.16、1.【答案解析】
如图,作BH⊥AC于H.由四边形ABCD是矩形,推出OA=OC=OD=OB,设OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由题意:21a×4a=40,求出a即可解决问题.【题目详解】如图,作BH⊥AC于H.∵四边形ABCD是矩形,∴OA=OC=OD=OB,设OA=OC=OD=OB=5a.∵tan∠BOH,∴BH=4a,OH=3a,由题意:21a×4a=40,∴a=1,∴AC=1.故答案为:1.【答案点睛】本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.17、1【答案解析】
根据概率的公式进行计算即可.【题目详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是15故答案为:15【答案点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.18、x≠﹣.【答案解析】
该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.【题目详解】解:根据分式有意义的条件得:2x+3≠1解得:故答案为【答案点睛】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、+4.【答案解析】
原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值.【题目详解】原式=++2+2×=+4.【答案点睛】本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键.20、见解析【答案解析】测试卷分析:(1),,可得∽,从而得,再根据∠BDF=∠CDA即可证;(2)由∽,可得,从而可得,再由∽,可得从而得,继而可得,得到.测试卷解析:(1)∵,∴,∵,∴∽,∴,又∵∠ADB=∠CDE,∴∠ADB+∠ADF=∠CDE+∠ADF,即∠BDF=∠CDA,∴∽;(2)∵∽,∴,∵,∴,∵∽,∴,∴,∴,∴.【答案点睛】本题考查了相似三角形的性质与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.21、(1);(2)1.【答案解析】
(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH=KD=x,得出AK=12﹣x,EF=(12﹣x),再根据S=x(12﹣x)=﹣(x﹣6)2+1,可得当x=6时,S有最大值为1.【题目详解】解:(1)∵△AEF∽△ABC,∴,∵边BC长为18,高AD长为12,∴=;(2)∵EH=KD=x,∴AK=12﹣x,EF=(12﹣x),∴S=x(12﹣x)=﹣(x﹣6)2+1.当x=6时,S有最大值为1.【答案点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.22、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)【答案解析】
(1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;(1)先过点D作DH⊥x轴于点H,运用割补法即可得到:四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;(3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标.【题目详解】(1)∵A(﹣4,0)在二次函数y=ax1﹣x+1(a≠0)的图象上,∴0=16a+6+1,解得a=﹣,∴抛物线的函数解析式为y=﹣x1﹣x+1;∴点C的坐标为(0,1),设直线AC的解析式为y=kx+b,则,解得,∴直线AC的函数解析式为:;(1)∵点D(m,n)是抛物线在第二象限的部分上的一动点,∴D(m,﹣m1﹣m+1),过点D作DH⊥x轴于点H,则DH=﹣m1﹣m+1,AH=m+4,HO=﹣m,∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,∴S=(m+4)×(﹣m1﹣m+1)+(﹣m1﹣m+1+1)×(﹣m),化简,得S=﹣m1﹣4m+4(﹣4<m<0);(3)①若AC为平行四边形的一边,则C、E到AF的距离相等,∴|yE|=|yC|=1,∴yE=±1.当yE=1时,解方程﹣x1﹣x+1=1得,x1=0,x1=﹣3,∴点E的坐标为(﹣3,1);当yE=﹣1时,解方程﹣x1﹣x+1=﹣1得,x1=,x1=,∴点E的坐标为(,﹣1)或(,﹣1);②若AC为平行四边形的一条对角线,则CE∥AF,∴yE=yC=1,∴点E的坐标为(﹣3,1).综上所述,满足条件的点E的坐标为(﹣3,1)、(,﹣1)、(,﹣1).23、(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.【答案解析】(1)根据方案即可列出函数关系式;(2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.解:(1)y1=20×300+80(x-20)得:y2=(20×300+80x)×0.8得:(2)w=300m+[300(20-m)+80(40-m)]×0.8,w=-4m+7360,因为w是m的一次函数,k=-4<0,所以w随的增加而减小,m当m=20时,w取得最小值.即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.24、证明见解析.【答案解析】
由题意易用角角边证明△BDE≌△CDF,得到DF=DE,再用等量代换的思想用含有AE和AF的等式表示AD的长.【题目详解】证明:∵CF⊥AD于,BE⊥AD,∴BE∥CF,∠EBD=∠FCD,又∵AD是△ABC的中线,∴BD=CD,∴在△BED与△CFD中,,∴△△BED≌△CFD(AAS)∴ED=FD,又∵AD=AF+DF①,
AD=AE-DE②,由①+②得:AF+AE=2AD.【答案点睛】该题考察了三角形全等的证明,利用全等三角形的性质进行对应边的转化.25、观景亭D到南滨河路AC的距离约为248米.【答案解析】
过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【题目详解】过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,tan∠DBE=,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.26、(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3).【答案解析】
(1)根据题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 居间合同国家收费标准
- 泥工合同中的违约责任-2024年版
- 设备拆除安全合同范本
- 2024版工厂人力资源外包合同2篇
- 监理合同模板
- 二零二四年度股权转让合同范本中股权转让的具体规定3篇
- 银行贷款合同电子版
- 情侣绝交协议书
- 工程承包合同协议书
- 员工宿舍房屋租赁合同模板
- 2024年全国普法知识考试题库及答案
- GB/T 7247.1-2024激光产品的安全第1部分:设备分类和要求
- 电子政务概论-形考任务5(在线测试权重20%)-国开-参考资料
- 人教版八年级上册第一章《机械运动》单元备课教案
- 隧道检测报告二衬
- 舞蹈老师实习周记Word版
- CURB-65评分表
- 前置胎盘案例分析模板(sp病人及评分
- 企业全面预算管理
- 备品备件管理规定
- 活性炭吸附装置点检记录
评论
0/150
提交评论