版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届黑龙江省哈尔滨市道里区重点中学毕业升学考试模拟卷数学卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、测试卷卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A.28×109 B.2.8×108 C.2.8×109 D.2.8×10102.下图是由八个相同的小正方体组合而成的几何体,其左视图是()A. B. C. D.3.已知方程组,那么x+y的值()A.-1 B.1 C.0 D.54.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A.80° B.50° C.30° D.20°5.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×1076.若分式在实数范围内有意义,则实数的取值范围是()A. B. C. D.7.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.48.若等式(-5)□5=–1成立,则□内的运算符号为()A.+ B.– C.× D.÷9.如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为()A. B. C. D.10.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. B.a C. D.11.某市2010年元旦这天的最高气温是8℃,最低气温是﹣2℃,则这天的最高气温比最低气温高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃12.函数y=自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程____________.14.当a,b互为相反数,则代数式a2+ab﹣2的值为_____.15.已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_____.16.如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD=100,AE=200,AB=40,AC=20,BC=30,则通过计算可得DE长为_____.17.如图,AB=AC,AD∥BC,若∠BAC=80°,则∠DAC=__________.18.如图,在四边形ABCD中,,AC、BD相交于点E,若,则______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.20.(6分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC∥直线l,∠BCE=71°,CE=54cm.(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适.小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E′,求EE′的长.(结果精确到0.1cm)(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)21.(6分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:(1)在这次研究中,一共调查了学生,并请补全折线统计图;(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?22.(8分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.(1)求证:DE是⊙O的切线;(2)求EF的长.23.(8分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.24.(10分)如图,直线与第一象限的一支双曲线交于A、B两点,A在B的左边.(1)若=4,B(3,1),求直线及双曲线的解析式:并直接写出不等式的解集;(2)若A(1,3),第三象限的双曲线上有一点C,接AC、BC,设直线BC解析式为;当AC⊥AB时,求证:k为定值.25.(10分)如图,中,,于,,为边上一点.(1)当时,直接写出,.(2)如图1,当,时,连并延长交延长线于,求证:.(3)如图2,连交于,当且时,求的值.26.(12分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF27.(12分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与函数的图象的一个交点为.(1)求,,的值;(2)将线段向右平移得到对应线段,当点落在函数的图象上时,求线段扫过的面积.
2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【答案解析】
根据科学计数法的定义来表示数字,选出正确答案.【题目详解】解:把一个数表示成a(1≤a<10,n为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D.【答案点睛】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.2、B【答案解析】
解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B.3、D【答案解析】
解:,①+②得:3(x+y)=15,则x+y=5,故选D4、D【答案解析】测试卷分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.5、A【答案解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:6700000=6.7×106,故选:A【答案点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、D【答案解析】
根据分式有意义的条件即可求出答案.【题目详解】解:由分式有意义的条件可知:,,故选:.【答案点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.7、B【答案解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.1.故选B.8、D【答案解析】
根据有理数的除法可以解答本题.【题目详解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,故选D.【答案点睛】考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.9、A【答案解析】
根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【题目详解】解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组的解为故选A.【答案点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.10、A【答案解析】
取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【题目详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故选A.【答案点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.11、A【答案解析】
用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.【题目详解】8-(-2)=8+2=10℃.即这天的最高气温比最低气温高10℃.故选A.12、B【答案解析】由题意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、200x【答案解析】
直接利用甲车比乙车早半小时到达目的地得出等式即可.【题目详解】解:设乙车的速度是x千米/小时,则根据题意,可列方程:200x故答案为:200x【答案点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.14、﹣1.【答案解析】分析:由已知易得:a+b=0,再把代数式a1+ab-1化为为a(a+b)-1即可求得其值了.详解:∵a与b互为相反数,∴a+b=0,∴a1+ab-1=a(a+b)-1=0-1=-1.故答案为:-1.点睛:知道“互为相反数的两数的和为0”及“能够把a1+ab-1化为为a(a+b)-1”是正确解答本题的关键.15、20π【答案解析】
利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.【题目详解】底面直径为8,底面半径=4,底面周长=8π,由勾股定理得,母线长==5,故圆锥的侧面积=×8π×5=20π,故答案为:20π.【答案点睛】本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.16、1.【答案解析】
先根据相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性质解答即可.【题目详解】∵∴又∵∠A=∠A,∴△ABC∽△AED,∴∵BC=30,∴DE=1,故答案为1.【答案点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.17、50°【答案解析】
根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答.【题目详解】解:∵AB=AC,∠BAC=80°,∴∠B=∠C=(180°﹣80°)÷2=50°;∵AD∥BC,∴∠DAC=∠C=50°,故答案为50°.【答案点睛】本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等.18、【答案解析】
利用相似三角形的性质即可求解;【题目详解】解:∵AB∥CD,∴△AEB∽△CED,∴,∴,故答案为.【答案点睛】本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、证明过程见解析【答案解析】
由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再结合条件可证明△ABC≌△DEC.【题目详解】∵∠BAE=∠BCE=∠ACD=90°,∴∠5+∠4=∠4+∠3,∴∠5=∠3,且∠B+∠CEA=180°,又∠7+∠CEA=180°,∴∠B=∠7,在△ABC和△DEC中,∴△ABC≌△DEC(ASA).20、(1)81cm;(2)8.6cm;【答案解析】
(1)作EM⊥BC于点M,由EM=ECsin∠BCE可得答案;(2)作E′H⊥BC于点H,先根据E′C=求得E′C的长度,再根据EE′=CE′﹣CE可得答案.【题目详解】(1)如图1,过点E作EM⊥BC于点M.由题意知∠BCE=71°、EC=54,∴EM=ECsin∠BCE=54sin71°≈51.3,则单车车座E到地面的高度为51.3+30≈81cm;(2)如图2所示,过点E′作E′H⊥BC于点H.由题意知E′H=70×0.85=59.5,则E′C==≈62.6,∴EE′=CE′﹣CE=62.6﹣54=8.6(cm).【答案点睛】本题考查了解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.21、(1)200名;折线图见解析;(2)1210人.【答案解析】
(1)由“其他”的人数和所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图;(2)利用样本估计总体的方法计算即可解答.【题目详解】(1)调查学生总人数为40÷20%=200(人),体育人数为:200×30%=60(人),阅读人数为:200﹣(60+30+20+40)=200﹣150=50(人).补全折线统计图如下:.(2)2200×=1210(人).答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人.【答案点睛】本题考查了统计知识的应用,测试卷以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念.22、(1)见解析;(2).【答案解析】
(1)连接OD,根据切线的判定方法即可求出答案;(2)由于OD∥AC,点O是AB的中点,从而可知OD为△ABC的中位线,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC−CE=4−1=3,在Rt△AEF中,所以EF=AE•sinA=3×sin60°=.【题目详解】(1)连接OD,∵△ABC是等边三角形,∴∠C=∠A=∠B=60°,∵OD=OB,∴△ODB是等边三角形,∴∠ODB=60°∴∠ODB=∠C,∴OD∥AC,∴DE⊥AC∴OD⊥DE,∴DE是⊙O的切线(2)∵OD∥AC,点O是AB的中点,∴OD为△ABC的中位线,∴BD=CD=2在Rt△CDE中,∠C=60°,∴∠CDE=30°,∴CE=CD=1∴AE=AC﹣CE=4﹣1=3在Rt△AEF中,∠A=60°,∴EF=AE•sinA=3×sin60°=【答案点睛】本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型.23、(1)y=﹣x2+x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【答案解析】
分析:(1)待定系数法求解可得;
(2)先利用待定系数法求出直线BD解析式为y=x-2,则Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;
(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再证△MBQ∽△BPQ得,即,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标.详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),
将点C(0,2)代入,得:-4a=2,
解得:a=-,
则抛物线解析式为y=-(x+1)(x-4)=-x2+x+2;
(2)由题意知点D坐标为(0,-2),
设直线BD解析式为y=kx+b,
将B(4,0)、D(0,-2)代入,得:,解得:,
∴直线BD解析式为y=x-2,
∵QM⊥x轴,P(m,0),
∴Q(m,-m2+m+2)、M(m,m-2),
则QM=-m2+m+2-(m-2)=-m2+m+4,
∵F(0,)、D(0,-2),
∴DF=,
∵QM∥DF,
∴当-m2+m+4=时,四边形DMQF是平行四边形,
解得:m=-1(舍)或m=3,
即m=3时,四边形DMQF是平行四边形;
(3)如图所示:
∵QM∥DF,
∴∠ODB=∠QMB,
分以下两种情况:
①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,
则,
∵∠MBQ=90°,
∴∠MBP+∠PBQ=90°,
∵∠MPB=∠BPQ=90°,
∴∠MBP+∠BMP=90°,
∴∠BMP=∠PBQ,
∴△MBQ∽△BPQ,
∴,即,
解得:m1=3、m2=4,
当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,
∴m=3,点Q的坐标为(3,2);
②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,
此时m=-1,点Q的坐标为(-1,0);
综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.【题目详解】请在此输入详解!24、(1)1<x<3或x<0;(2)证明见解析.【答案解析】
(1)将B(3,1)代入,将B(3,1)代入,即可求出解析式;再根据图像直接写出不等式的解集;(2)过A作l∥x轴,过C作CG⊥l于G,过B作BH⊥l于H,△AGC∽△BHA,设B(m,)、C(n,),根据对应线段成比例即可得出mn=-9,联立,得,根据根与系数的关系得,由此得出为定值.【题目详解】解:(1)将B(3,1)代入,∴m=3,,将B(3,1)代入,∴,,∴,∴不等式的解集为1<x<3或x<0(2)过A作l∥x轴,过C作CG⊥l于G,过B作BH⊥l于H,则△AGC∽△BHA,设B(m,)、C(n,),∵,∴,∴,∴,∴mn=-9,联立∴,∴∴,∴为定值.【答案点睛】此题主要考查反比例函数的图像与性质,解题的关键是根据题意作出辅助线,再根据反比例函数的性质进行求解.25、(1),;(2)证明见解析;(3).【答案解析】
(1)利用相似三角形的判定可得,列出比例式即可求出结论;(2)作交于,设,则,根据平行线分线段成比例定理列出比例式即可求出AH和EH,然后根据平行线分线段成比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课题申报参考:教育发展质量动态监测和评估研究
- 2025版土地储备开发投资合作协议3篇
- 二零二五版能源采购合同风险控制与能源价格波动应对3篇
- 2025年度个人艺术品收藏鉴定合同3篇
- 2025年度个人股东股权转让协议范本详尽规定股权转让费用3篇
- 2025版委托人事代理及员工职业发展协议3篇
- 基于物联网的智能穿戴设备2025年度研发合同
- 2025年个人鱼塘智能养殖系统研发与应用合同范本4篇
- 2025年度企业股权转让与知识产权许可合同
- 2025年度新型环保木质防火门批发采购合同
- 2025年上半年江苏连云港灌云县招聘“乡村振兴专干”16人易考易错模拟试题(共500题)试卷后附参考答案
- DB3301T 0382-2022 公共资源交易开评标数字见证服务规范
- 人教版2024-2025学年八年级上学期数学期末压轴题练习
- 江苏省无锡市2023-2024学年八年级上学期期末数学试题(原卷版)
- 俄语版:中国文化概论之中国的传统节日
- 2022年湖南省公务员录用考试《申论》真题(县乡卷)及答案解析
- 妇科一病一品护理汇报
- 哪吒之魔童降世
- 2022年上海市各区中考一模语文试卷及答案
- 2024年全国统一高考数学试卷(新高考Ⅱ)含答案
- 地震工程学概论课件
评论
0/150
提交评论