版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数(是虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.某三棱锥的三视图如图所示,则该三棱锥的体积为A. B. C.2 D.3.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在,内的学生人数为()A.800 B.1000 C.1200 D.16004.当时,函数的图象大致是()A. B.C. D.5.已知双曲线:(,)的焦距为.点为双曲线的右顶点,若点到双曲线的渐近线的距离为,则双曲线的离心率是()A. B. C.2 D.36.已知函数的零点为m,若存在实数n使且,则实数a的取值范围是()A. B. C. D.7.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为().A.432 B.576 C.696 D.9608.已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是A. B. C. D.9.设命题函数在上递增,命题在中,,下列为真命题的是()A. B. C. D.10.执行如图所示的程序框图,若输入,,则输出的值为()A.0 B.1 C. D.11.的展开式中的项的系数为()A.120 B.80 C.60 D.4012.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.若x,y均为正数,且,则的最小值为________.14.双曲线的左焦点为,点,点P为双曲线右支上的动点,且周长的最小值为8,则双曲线的实轴长为________,离心率为________.15.已知是函数的极大值点,则的取值范围是____________.16.已知变量x,y满足约束条件x-y≤0x+2y≤34x-y≥-6,则三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业原有甲、乙两条生产线,为了分析两条生产线的效果,先从两条生产线生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值.该项指标值落在内的产品视为合格品,否则为不合格品.乙生产线样本的频数分布表质量指标合计频数2184814162100(1)根据甲生产线样本的频率分布直方图,以从样本中任意抽取一件产品且为合格品的频率近似代替从甲生产线生产的产品中任意抽取一件产品且为合格品的概率,估计从甲生产线生产的产品中任取5件恰有2件为合格品的概率;(2)现在该企业为提高合格率欲只保留其中一条生产线,根据上述图表所提供的数据,完成下面的列联表,并判断是否有90%把握认为该企业生产的这种产品的质量指标值与生产线有关?若有90%把握,请从合格率的角度分析保留哪条生产线较好?甲生产线乙生产线合计合格品不合格品合计附:,.0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87918.(12分)设数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+1(1)求数列{an}(2)设cn=bnan,求数列19.(12分)设函数其中(Ⅰ)若曲线在点处切线的倾斜角为,求的值;(Ⅱ)已知导函数在区间上存在零点,证明:当时,.20.(12分)在平面直角坐标系中,,,且满足(1)求点的轨迹的方程;(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程.21.(12分)已知的三个内角所对的边分别为,向量,,且.(1)求角的大小;(2)若,求的值22.(10分)在①,②,③这三个条件中任选一个,补充在下面问题中.若问题中的正整数存在,求的值;若不存在,说明理由.设正数等比数列的前项和为,是等差数列,__________,,,,是否存在正整数,使得成立?
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】
将整理成的形式,得到复数所对应的的点,从而可选出所在象限.【题目详解】解:,所以所对应的点为在第一象限.故选:A.【答案点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把当成进行计算.2、A【答案解析】由给定的三视图可知,该几何体表示一个底面为一个直角三角形,且两直角边分别为和,所以底面面积为高为的三棱锥,所以三棱锥的体积为,故选A.3、B【答案解析】
由图可列方程算得a,然后求出成绩在内的频率,最后根据频数=总数×频率可以求得成绩在内的学生人数.【题目详解】由频率和为1,得,解得,所以成绩在内的频率,所以成绩在内的学生人数.故选:B【答案点睛】本题主要考查频率直方图的应用,属基础题.4、B【答案解析】由,解得,即或,函数有两个零点,,不正确,设,则,由,解得或,由,解得:,即是函数的一个极大值点,不成立,排除,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.5、A【答案解析】
由点到直线距离公式建立的等式,变形后可求得离心率.【题目详解】由题意,一条渐近线方程为,即,∴,,即,,.故选:A.【答案点睛】本题考查求双曲线的离心率,掌握渐近线方程与点到直线距离公式是解题基础.6、D【答案解析】
易知单调递增,由可得唯一零点,通过已知可求得,则问题转化为使方程在区间上有解,化简可得,借助对号函数即可解得实数a的取值范围.【题目详解】易知函数单调递增且有惟一的零点为,所以,∴,问题转化为:使方程在区间上有解,即在区间上有解,而根据“对勾函数”可知函数在区间的值域为,∴.故选D.【答案点睛】本题考查了函数的零点问题,考查了方程有解问题,分离参数法及构造函数法的应用,考查了利用“对勾函数”求参数取值范围问题,难度较难.7、B【答案解析】
先把没有要求的3人排好,再分如下两种情况讨论:1.甲、丁两者一起,与乙、丙都不相邻,2.甲、丁一起与乙、丙二者之一相邻.【题目详解】首先将除甲、乙、丙、丁外的其余3人排好,共有种不同排列方式,甲、丁排在一起共有种不同方式;若甲、丁一起与乙、丙都不相邻,插入余下三人产生的空档中,共有种不同方式;若甲、丁一起与乙、丙二者之一相邻,插入余下三人产生的空档中,共有种不同方式;根据分类加法、分步乘法原理,得满足要求的排队方法数为种.故选:B.【答案点睛】本题考查排列组合的综合应用,在分类时,要注意不重不漏的原则,本题是一道中档题.8、A【答案解析】
根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最小值即可得到结果.【题目详解】为定义在上的偶函数,图象关于轴对称又在上是增函数在上是减函数,即对于恒成立在上恒成立,即的取值范围为:本题正确选项:【答案点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.9、C【答案解析】
命题:函数在上单调递减,即可判断出真假.命题:在中,利用余弦函数单调性判断出真假.【题目详解】解:命题:函数,所以,当时,,即函数在上单调递减,因此是假命题.命题:在中,在上单调递减,所以,是真命题.则下列命题为真命题的是.故选:C.【答案点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.10、A【答案解析】
根据输入的值大小关系,代入程序框图即可求解.【题目详解】输入,,因为,所以由程序框图知,输出的值为.故选:A【答案点睛】本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.11、A【答案解析】
化简得到,再利用二项式定理展开得到答案.【题目详解】展开式中的项为.故选:【答案点睛】本题考查了二项式定理,意在考查学生的计算能力.12、A【答案解析】
试题分析:α⊥β,b⊥m又直线a在平面α内,所以a⊥b,但直线不一定相交,所以“α⊥β”是“a⊥b”的充分不必要条件,故选A.考点:充分条件、必要条件.二、填空题:本题共4小题,每小题5分,共20分。13、4【答案解析】
由基本不等式可得,则,即可解得.【题目详解】方法一:,当且仅当时取等.方法二:因为,所以,所以,当且仅当时取等.故答案为:.【答案点睛】本题考查基本不等式在求最小值中的应用,考查学生对基本不等式的灵活使用,难度较易.14、22【答案解析】
设双曲线的右焦点为,根据周长为,计算得到答案.【题目详解】设双曲线的右焦点为.周长为:.当共线时等号成立,故,即实轴长为,.故答案为:;.【答案点睛】本题考查双曲线周长的最值问题,离心率,实轴长,意在考查学生的计算能力和转化能力.15、【答案解析】
方法一:令,则,,当,时,,单调递减,∴时,,,且,∴在上单调递增,时,,,且,∴在上单调递减,∴是函数的极大值点,∴满足题意;当时,存在使得,即,又在上单调递减,∴时,,,所以,这与是函数的极大值点矛盾.综上,.方法二:依据极值的定义,要使是函数的极大值点,由知须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得.16、-5【答案解析】
画出x,y满足的可行域,当目标函数z=x-2y经过点A时,z最小,求解即可。【题目详解】画出x,y满足的可行域,由x+2y=34x-y=-6解得A-1,2,当目标函数z=x-2y经过点A【答案点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想。需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.0081(2)见解析,保留乙生产线较好.【答案解析】
(1)先求出任取一件产品为合格品的频率,“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,恰好发生2次的概率用二项分布概率即可解决.(2)独立性检验算出的观测值即可判断.【题目详解】(1)根据甲生产线样本的频率分布直方图,样本中任取一件产品为合格品的频率为:.设“从甲生产线生产的产品中任取一件且为合格品”为事件,事件发生的概率为,则由样本可估计.那么“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,事件恰好发生2次,其概率为:.(2)列联表:甲生产线乙生产线合计合格品9096186不合格品10414合计100100200的观测值,∵,,∴有90%把握认为该企业生产的这种产品的质量指标值与生产线有关.由(1)知甲生产线的合格率为0.9,乙生产线的合格率为,∵,∴保留乙生产线较好.【答案点睛】此题考查独立重复性检验二项分布概率,独立性检验等知识点,认准特征代入公式即可,属于较易题目.18、(1)an=(2)Tn【答案解析】
(1)利用an与Sn的递推关系可以an的通项公式;P点代入直线方程得b【题目详解】(1)由an+1=2S两式相减得an+1-a又a2=2S1+1=3,所以a由点P(bn,bn+1则数列{bn(2)因为cn=b则13两式相减得:23所以Tn【答案点睛】用递推关系an=Sn-19、(Ⅰ);(Ⅱ)证明见解析【答案解析】
(Ⅰ)求导得到,,解得答案.(Ⅱ),故,在上单调递减,在上单调递增,,设,证明函数单调递减,故,得到证明.【题目详解】(Ⅰ),故,,故.(Ⅱ),即,存在唯一零点,设零点为,故,即,在上单调递减,在上单调递增,故,设,则,设,则,单调递减,,故恒成立,故单调递减.,故当时,.【答案点睛】本题考查了函数的切线问题,利用导数证明不等式,转化为函数的最值是解题的关键.20、(1).(2)的方程为.【答案解析】
(1)令,则,由此能求出点C的轨迹方程.(2)令,令直线,联立,得,由此利用根的判别式,韦达定理,三角形面积公式,结合已知条件能求出直线的方程。【题目详解】解:(1)因为,即直线的斜率分别为且,设点,则,整理得.(2)令,易知直线不与轴重合,令直线,与联立得,所以有,由,故,即,从而,解得,即。所以直线的方程为。【答案点睛】本题考查椭圆方程、直线方程的求法,考查椭圆方程、椭圆与直线的位置关系,考查运算求解能力,考查化归与转化思想,是中档题。21、(1)(2)【答案解析】
利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 轧饲料机市场需求与消费特点分析
- 2024年度影视制作团队聘用合同
- 电器接线盒市场需求与消费特点分析
- 动物驱逐剂市场发展现状调查及供需格局分析预测报告
- 2024年度定点物业管理服务合同:大安农场学校
- 2024年度淋浴房项目风险管理合同
- 2024年度000吨冷冻食品物流运输合同
- 2024年度工厂搬迁搬运服务合同
- 2024年度物联网应用开发与设备采购合同
- 2024届备战高考数学易错题《函数及其应用、指对幂函数》含答案解析
- 食品标准与法规智慧树知到期末考试答案2024年
- MOOC 基础英语语法-西安电子科技大学 中国大学慕课答案
- 光伏项目划分表
- 《客舱安全与应急处置》-课件:释压的类型和迹象
- 看不见的杀手-病毒性传染病智慧树知到期末考试答案2024年
- 砂石加工方案
- 传统出租车行业的利弊分析
- 尾矿库作业人员试题
- 客房智能锁厂家销售话术
- 邮政省公司招聘笔试题库
- 妊娠诊断学知识考核试题题库与答案
评论
0/150
提交评论