2022-2023学年甘肃省张掖市高台第一中学数学高一上期末学业质量监测模拟试题含解析_第1页
2022-2023学年甘肃省张掖市高台第一中学数学高一上期末学业质量监测模拟试题含解析_第2页
2022-2023学年甘肃省张掖市高台第一中学数学高一上期末学业质量监测模拟试题含解析_第3页
2022-2023学年甘肃省张掖市高台第一中学数学高一上期末学业质量监测模拟试题含解析_第4页
2022-2023学年甘肃省张掖市高台第一中学数学高一上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若则函数的图象必不经过()A.第一象限 B.第二象限C.第三象限 D.第四象限2.如图,一个半径为3m的筒车按逆时针方向每分转1.5圈,筒车的轴心O距离水面的高度为2.2m,设筒车上的某个盛水筒P到水面的距离为d(单位:m)(在水面下则d为负数),若从盛水筒P刚浮出水面时开始计算时间,则d与时间t(单位:s)之间的关系为,则其中A,,K的值分别为()A.6,,2.2 B.6,,2.2C.3,,2.2 D.3,,2.23.已知集合,集合与的关系如图所示,则集合可能是()A. B.C. D.4.设则下列说法正确的是()A.方程无解 B.C.奇函数 D.5.若,则下列不等式中,正确的是()A. B.C. D.6.已知平面向量,,若,则实数的值为()A.0 B.-3C.1 D.-17.下列函数在上是增函数的是A. B.C. D.8.某地区小学、初中、高中三个学段学生视力情况有较大差异,而男、女生视力情况差异不大,为了解该地区中小学生的视力情况,最合理的抽样方法是()A.简单随机抽样 B.按性别分层随机抽样C.按学段分层随机抽样 D.其他抽样方法9.下列说法中,正确的是()A.若,则B.函数与函数是同一个函数C.设点是角终边上的一点,则D.幂函数的图象过点,则10.函数的图像大致为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.从含有两件正品和一件次品b的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,取出的两件产品都是正品的概率为__________.12.过点,的直线的倾斜角为___________.13.已知正数、满足,则的最大值为_________14.函数y=cos2x-sinx的值域是__________________15.已知集合,,则集合中子集个数是____16.设当时,函数取得最大值,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若,成立,求实数的取值范围;(2)证明:有且只有一个零点,且18.在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中且.设()若,,,求方程在区间内的解集()若函数满足:图象关于点对称,在处取得最小值,试确定、和应满足的与之等价的条件19.已知函数(1)判断的奇偶性,并加以证明;(2)求函数的值域20.已知全集,集合,.(1)若,求;(2)若,求实数的取值范围.21.已知函数,该函数图象一条对称轴与其相邻的一个对称中心的距离为(1)求函数的对称轴和对称中心;(2)求在上的单调递增区间

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】令,则的图像如图所示,不经过第二象限,故选B.考点:1、指数函数图像;2、特例法解题.2、D【解析】根据实际含义分别求的值即可.【详解】振幅即为半径,即;因为逆时针方向每分转1.5圈,所以;;故选:D.3、D【解析】由图可得,由选项即可判断.【详解】解:由图可知:,,由选项可知:,故选:D.4、B【解析】根据函数的定义逐个分析判断【详解】对于A,当为有理数时,由,得,所以A错误,对于B,因为为无理数,所以,所以B正确,对于C,当为有理数时,也为有理数,所以,当为无理数时,也为无理数,所以,所以为偶函数,所以C错误,对于D,因为,所以,所以D错误,故选:B5、C【解析】利用不等式的基本性质判断.【详解】由,得,即,故A错误;则,则,即,故B错误;则,,所以,故C正确;则,所以,故D错误;故选:C6、C【解析】根据,由求解.【详解】因为向量,,且,所以,解得,故选:C.7、A【解析】根据题意,依次分析选项中函数的单调性,综合即可得答案【详解】解:根据题意,依次分析选项:对于A,,在区间上单调递增,符合题意;对于B,,为指数函数,在区间上单调递减,不符合题意;对于C,,为对数函数,在区间上单调递减,不符合题意;对于D,反比例函数,在区间上单调递减,不符合题意;故选A【点睛】本题考查函数单调性的判断,属于基础题8、C【解析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【详解】因为某地区小学、初中、高中三个学段学生的视力情况有较大差异,男、女生视力情况差异不大,然而学段的视力情况有较大差异,则应按学段分层抽样,故选:.9、D【解析】A选项,举出反例;B选项,两函数定义域不同;C选项,利用三角函数定义求解;D选项,待定系数法求出解析式,从而得到答案.【详解】A选项,当时,满足,而,故A错误;B选项,定义域为R,定义域为,两者不是同一个函数,B错误;C选项,,C错误;D选项,设,将代入得:,解得:,所以,D正确.故选:D10、A【解析】详解】由得,故函数的定义域为又,所以函数为奇函数,排除B又当时,;当时,.排除C,D.选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】基本事件总数6,取出的两件产品都是正品包含的基本事件个数2,由此能求出取出的两件产品都是正品的概率.【详解】从含有两件正品和一件次品的3件产品中,按先后顺序任意取出两件产品,每次取出后不放回,共包含,,,,,6个基本事件,取出的两件产品都是正品包含,2个基本事件,∴取出的两件产品都是正品的概率为,故答案为:.12、##【解析】设直线的倾斜角为,求出直线的斜率即得解.【详解】解:设直线的倾斜角为,由题得直线的斜率为,因为,所以.故答案为:13、【解析】利用均值不等式直接求解.【详解】因为且,所以,即,当且仅当,即时,等号成立,所以的最大值为.故答案为:.14、【解析】将原函数转换成同名三角函数即可.【详解】,,当时取最大值,当时,取最小值;故答案为:.15、4【解析】根据题意,分析可得集合的元素为圆上所有的点,的元素为直线上所有的点,则中元素为直线与圆的交点,由直线与圆的位置关系分析可得直线与圆的交点个数,即可得答案【详解】由题意知中的元素为圆与直线交点,因为圆心(1,-2)到直线2x+y-5=0的距离∴直线与圆相交∴集合有两个元素,故集合中子集个数为4故答案为4【点睛】本题考查直线与圆的位置关系,涉及集合交集的意义,解答本题的关键是判定直线与圆的位置关系,以及运用集合的结论:一个含有个元素的集合的子集的个数为个.16、【解析】利用辅助角公式化简函数解析式,再根据最值情况可得解.【详解】由辅助角公式可知,,,,当,时取最大值,即,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析.【解析】(1)把已知条件转化成大于在上的最小值即可解决;(2)先求导函数,判断出函数的单调区间,图像走势,再判断函数零点,隐零点问题重在转化.【小问1详解】由得,则在上单调递增,在上最小值为若,成立,则必有由,得故实数的取值范围为【小问2详解】在上单调递增,且恒成立,最小正周期,在上最小值为由此可知在恒为正值,没有零点.下面看在上的零点情况.,,则即在单调递增,,故上有唯一零点.综上可知,在上有且只有一个零点.令,则,令,则即在上单调递减,故有18、(1)解集为;(2)见解析.【解析】分析:()由平面向量数量积公式、结合辅助角公式可得,令,从而可得结果;()“图象关于点对称,且在处取得最小值”.因此,根据三角函数的图象特征可以知道,,故有,∴,,当且仅当,时,的图象关于点对称;此时,,对讨论两种情况可得使得函数满足“图象关于点对称,且在处取得最小值的充要条件”是“,时,,;或当时,,”.详解:()根据题意,当,,时,,,则有或,即或,又因为,故在内解集为()解:因为,设周期因为函数须满足“图象关于点对称,且在处取得最小值”因此,根据三角函数的图象特征可以知道,,故有,∴,,又因为,形如的函数的图象的对称中心都是的零点,故需满足,而当,时,因为,;所以当且仅当,时,的图象关于点对称;此时,,∴,(i)当,时,,进一步要使处取得最小值,则有,∴,故,又,则有,,因此,由可得,(ii)当时,,进一步要使处取得最小值,则有;又,则有,因此,由,可得,综上,使得函数满足“图象关于点对称,且在处取得最小值的充要条件”是“,时,,;或当时,,”点睛:本题主要考查公式三角函数的图像和性质以及辅助角公式的应用,属于难题.利用该公式()可以求出:①的周期;②单调区间(利用正弦函数的单调区间可通过解不等式求得);③值域();④对称轴及对称中心(由可得对称轴方程,由可得对称中心横坐标.19、(1)是奇函数;证明见解析(2)【解析】(1)首先确定定义域,根据奇偶性定义可得结论;(2)令,可求得的范围,进而可得的值域.【小问1详解】由得:,定义域为,关于原点对称;,,为奇函数;【小问2详解】令,且,,或,或,的值域为.20、(1);(2)或.【解析】(1)先求得集合A,当时,求得集合B,根据交集、补集运算的概念,即可得答案.(2)根据题意,可得,根据,可得或,即可得答案【详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论