版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.奇函数f(x)在(-∞,0)上单调递增,若f(-1)=0,则不等式f(x)<0的解集是.A.(-∞,-1)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1) D.(-1,0)∪(1,+∞)2.如图,网格纸上小正方形的边长均为,粗线画出的是某几何体的三视图,若该几何体的体积为,则()A. B.C. D.3.函数的部分图象大致为()A B.C. D.4.如图,点,,分别是正方体的棱,的中点,则异面直线和所成的角是()A. B.C. D.5.已知函数,若,则实数的取值范围是A. B.C. D.6.已知集合,集合为整数集,则A. B.C. D.7.如果角的终边在第二象限,则下列结论正确的是A. B.C. D.8.不等式的解集为()A. B.C. D.9.已知点的坐标分别为,直线相交于点,且直线的斜率与直线的斜率的差是1,则点的轨迹方程为A. B.C. D.10.已知y=(x-m)(x-n)+2022(m<n),且α,β(α<β)是方程y=0的两根,则α,β,m,n的大小关系是()A.α<m<n<β B.m<α<n<βC.m<α<β<n D.α<m<β<n11.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为A.1 B.C. D.12.已知集合,,则()A. B.C. D.二、填空题(本大题共4小题,共20分)13.天津之眼,全称天津永乐桥摩天轮,是世界上唯一一个桥上瞰景的摩天轮.如图,已知天津之眼的半径是55m,最高点距离地面的高度为120m,开启后按逆时针方向匀速转动,每30转动一圈.喜欢拍照的南鸢同学想坐在天津之眼上拍海河的景色,她在距离地面最近的舱位进舱.已知在距离地面超过92.5m的高度可以拍到最美的景色,则在天津之眼转动一圈的过程中,南鸢同学可以拍到最美景色的时间是_________分钟14.如图,若角的终边与单位圆交于点,则________,________15.若函数在区间上单调递减,则实数的取值范围是__________16.将函数y=sin2x+π4的图象上各点的纵坐标不变,横坐标伸长到原来的三、解答题(本大题共6小题,共70分)17.如图,正方形的边长为,,分别为边和上的点,且的周长为2.(1)求证:;(2)求面积的最小值.18.已知函数.(1)当时,求在上的值域;(2)当时,已知,若有,求的取值范围.19.如图,在平行四边形中,设,.(1)用向量,表示向量,;(2)若,求证:.20.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数(Ⅰ)若是奇函数,求的值(Ⅱ)当时,求函数在上的值域,判断函数在上是否为有界函数,并说明理由(Ⅲ)若函数在上是以为上界的函数,求实数的取值范围21.已知幂函数的图象经过点.(1)求的解析式;(2)用定义证明:函数在区间上单调递增.22.设,关于的二次不等式的解集为,集合,满足,求实数的取值范围.
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】考点:奇偶性与单调性的综合分析:根据题目条件,画出一个函数图象,再观察即得结果解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(-∞,-1)∪(0,1)故选A2、B【解析】作出几何体实物图,并将该几何体的体积用表示,结合题中条件可求出的值.【详解】由三视图可知,该几何体由一个正方体截去四分之一而得,其体积为,即,解得.故选:B.【点睛】本题考查利用三视图计算空间几何体的体积,解题的关键就是作出几何体的实物图,考查空间想象能力与计算能力,属于中等题.3、C【解析】根据题意,分析可得函数为奇函数,当时,有,利用排除法分析可得答案.详解】解:根据题意,对于函数,有函数,即函数为奇函数,图象关于原点对称,故排除A、B;当时,,则恒有,排除D;故选:C.4、C【解析】通过平移的方法作出直线和所成的角,并求得角的大小.【详解】依题意点,,分别是正方体的棱,的中点,连接,结合正方体的性质可知,所以是异面直线和所成的角,根据正方体的性质可知,是等边三角形,所以,所以直线和所成的角为.故选:C【点睛】本小题主要考查线线角的求法,属于基础题.5、D【解析】画出图象可得函数在实数集R上单调递增,故由,可得,即,解得或故实数的取值范围是.选D6、A【解析】,选A.【考点定位】集合的基本运算.7、B【解析】由题意结合三角函数的性质确定所给结论是否正确即可.【详解】角的终边在第二象限,则,AC错误;,B正确;当时,,,D错误本题选择B选项.【点睛】本题主要考查三角函数符号,二倍角公式及其应用等知识,意在考查学生的转化能力和计算求解能力.8、D【解析】化简不等式并求解即可.【详解】将不等式变形为,解此不等式得或.因此,不等式解集为故选:D【点睛】本题考查一元二次不等式解法,考查学生计算能力,属于基础题.9、B【解析】设,直线的斜率为,直线的斜率为.有直线的斜率与直线的斜率的差是1,所以.通分得:,整理得:.故选B.点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x,y之间的关系F(x,y)=0(2)待定系数法:已知所求曲线的类型,求曲线方程(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程(4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程10、C【解析】根据二次函数的性质判断【详解】记,由题意,,的图象是开口向上的抛物线,所以上递减,在上递增,又,,所以,,即(也可由的图象向下平移2022个单位得的图象得出判断)故选:C11、D【解析】由三视图可知:此立体图形是一个底面为等腰直角三角形,一条棱垂直于底面的三棱锥;所以其体积为.故选D.考点:三视图和立体图形的转化;三棱锥的体积.12、D【解析】先求出集合B,再求出两集合的交集即可【详解】由,得,所以,因为,所以,故选:D二、填空题(本大题共4小题,共20分)13、10【解析】借助三角函数模型,设,以轴心为原点,与地面平行的直线为轴,建立直角坐标系,由题意求出解析式,再令,解三角不等式即可得答案.【详解】解:如图,设座舱距离地面最近的位置为点,以轴心为原点,与地面平行的直线为轴,建立直角坐标系.设时,南鸢同学位于点,以为终边的角为,根据摩天轮转一周大约需要,可知座舱转动的角速度约为,由题意,可得,,令,,可得,所以南鸢同学可以拍到最美景色的时间是分钟,故答案为:10.14、①.##0.8②.【解析】根据单位圆中的勾股定理和点所在象限求出,然后根据三角函数的定义求出即可【详解】如图所示,点位于第一象限,则有:,且解得:(其中)故答案为:;15、【解析】本题等价于在上单调递增,对称轴,所以,得.即实数的取值范围是点睛:本题考查复合函数的单调性问题.复合函数的单调性遵循“同增异减”的性质.所以本题的单调性问题就等价于在上单调递增,为开口向上的抛物线单调性判断,结合图象即可得到答案16、f【解析】利用三角函数图象的平移和伸缩变换即可得正确答案.【详解】函数y=sin2x+π得到y=sin再向右平移π4个单位,得到y=故最终所得到的函数解析式为:fx故答案为:fx三、解答题(本大题共6小题,共70分)17、(1)证明见解析;(2).【解析】(1)补形得证明其与全等,从而得证.(2)引进参数,由已知建立参数变量之间的等量关系,再用方程根的判别式获得变量最值,进一步得到所求面积最值.【详解】(1)如图:延长至,使,连接,则.故,,.又.,即.(2)设,,,则,,,于是,整理得:,.即.又,,当且仅当时等式成立.此时,因此当,时,取最小值.的最小值为.【点睛】方法点睛:引进参数建立参变量方程,再变换主次元,利用方程根的判别式,确定参数取值范围是求最值的方法之一.18、(1);(2).【解析】(1)将方程整理为关于的二次函数,令,利用二次函数的图象与性质求函数的值域;(2)利用换元法及二次函数的性质求出函数在上的值域A,根据对数函数的单调性求出函数在区间上的值域B,根据题意有,根据集合的包含关系列出不等式进行求解.【详解】(1)当,令,设,,函数在上单调递增,,的值域为.(2)设的值域为集合的值域为集合根据题意可得,,令,,,函数在上单调递增,且,,又,所以在上单调递增,,,由得,的取值范围是.【点睛】本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则的值域是值域的子集19、(1),.(2)证明见解析【解析】(1)根据向量的运算法则,即可求得向量,;(2)由,根据向量的运算法则,求得,即可求解.【小问1详解】解:在平行四边形中,由,,根据向量的运算法则,可得,.【小问2详解】解:因为,可得,所以.20、(1)(2)是(3)或【解析】(1)根据奇函数定义得,解得的值(2)先分离得再根据单调性求值域,最后根据值域判定是否成立(3)转化为不等式恒成立,再分离变量得最值,最后根据最值求实数的取值范围试题解析:解:()由是奇函数,则,得,即,∴,()当时,∵,∴,∴,满足∴在上为有界函数()若函数在上是以为上界的有界函数,则有在上恒成立∴,即,∴,化简得:,即,上面不等式组对一切都成立,故,∴或21、(1);(2)证明见解析.【解析】(1)设幂函数,由得α的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024个人车位转让协议合同范本
- 2024年度园林绿化工程设计合同范例
- 2024厂房交易居间合同
- 2024厂房物业管理合同范文
- 20243年跨境化工原料采购协议协议一
- 2024年度企业人员派遣服务协议范本版B版
- 2024专项建筑工程协议附加条款一
- 2024专业变压器安装工程承包协议2
- 2024年度企业经营咨询服务合同
- 2024年度单位团购公寓协议样本
- 第十三课《伸缩玩具》(导学案)人美版(2012)美术三年级上册
- 血清蛋白电泳与免疫固定电泳PPT
- 第五课-《审美自律》课件
- 评审工作方案范文10篇
- 宪法知识专题讲座讲稿范文五篇
- 当马克思的思想遇上中华优秀传统文化PPT马克思思想为中国式现代化道路提供了坚实有力的理论自信PPT课件(带内容)
- 土石方工程量计算规范
- 年产40万吨纯碱搬迁改造项目环评报告书
- 《疾病与人类健康》
- 山东建筑大学材料力学试题A
- 插花艺术形考大作业1119
评论
0/150
提交评论