版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.,则A.1 B.2C.26 D.102.所有与角的终边相同的角可以表示为,其中角()A.一定是小于90°的角 B.一定是第一象限的角C.一定是正角 D.可以是任意角3.已知点在第二象限,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限4.已知指数函数在上单调递增,则实数的值为()A. B.1C. D.25.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为A.1 B.C. D.6.已知点,,,则的面积为()A.5 B.6C.7 D.87.已知定义在R上的函数的图象是连续不断的,且有如下对应值表:x123453那么函数一定存在零点的区间是()A. B.C. D.8.函数y=f(x)在R上为增函数,且f(2m)>f(﹣m+9),则实数m的取值范围是()A.(﹣∞,﹣3) B.(0,+∞)C.(3,+∞) D.(﹣∞,﹣3)∪(3,+∞)9.已知函数且,则函数恒过定点()A. B.C. D.10.根据表格中的数据,可以判定函数的一个零点所在的区间为.A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.①函数y=sin2x的单调增区间是[],(k∈Z);②函数y=tanx在它的定义域内是增函数;③函数y=|cos2x|的周期是π;④函数y=sin()是偶函数;其中正确的是____________12.若函数的图象与的图象关于对称,则_________.13.如图所示,正方体的棱长为,线段上有两个动点,且,则下列结论中正确的是_____①∥平面;②平面⊥平面;③三棱锥的体积为定值;④存在某个位置使得异面直线与成角°14.下列函数图象与x轴都有交点,其中不能用二分法求其零点的是___________.(写出所有符合条件的序号)15.函数的图像与直线y=a在(0,)上有三个交点,其横坐标分别为,,,则的取值范围为_______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知角终边与单位圆交于点(1)求的值;(2)若,求的值.17.设函数(1)若不等式的解集是,求不等式的解集;(2)当时,在上恒成立,求实数的取值范围18.已知函数为偶函数.(1)求的值;(2)若恒成立,求实数的取值范围.19.已知函数.(1)当时,求的定义域;(2)若函数只有一个零点,求的取值范围.20.已知,非空集合,若S是P的子集,求m的取值范围.21.若存在实数、使得,则称函数为、的“函数”(1)若.为、的“函数”,其中为奇函数,为偶函数,求、的解析式;(2)设函数,,是否存在实数、使得为、的“函数”,且同时满足:①是偶函数;②的值域为.若存在,请求出、的值;若不存在,请说明理由.(注:为自然数.)
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】根据题意,由函数的解析式可得,进而计算可得答案.【详解】根据题意,,则;故选B.【点睛】本题考查分段函数函数值的计算,注意分析函数的解析式.解决分段函数求值问题的策略:(1)在求分段函数的值f(x0)时,一定要首先判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.2、D【解析】由终边相同的角的表示的结论的适用范围可得正确选项.【详解】因为结论与角的终边相同的角可以表示为适用于任意角,所以D正确,故选:D.3、C【解析】利用任意角的三角函数的定义,三角函数在各个象限中的负号,求得角α所在的象限【详解】解:∵点P(sinα,tanα)在第二象限,∴sinα<0,tanα>0,若角α顶点为坐标原点,始边为x轴的非负半轴,则α的终边落在第三象限,故选:C4、D【解析】解方程即得或,再检验即得解.【详解】解:由题得或.当时,上单调递增,符合题意;当时,在上单调递减,不符合题意.所以.故选:D5、D【解析】由三视图可知:此立体图形是一个底面为等腰直角三角形,一条棱垂直于底面的三棱锥;所以其体积为.故选D.考点:三视图和立体图形的转化;三棱锥的体积.6、A【解析】设AB边上的高为h,则S△ABC=|AB|·h,根据两点的距离公式求得|AB|,而AB边上的高h就是点C到直线AB的距离,由点到直线的距离公式可求得选项【详解】设AB边上的高为h,则S△ABC=|AB|·h,而|AB|=,AB边上的高h就是点C到直线AB的距离AB边所在的直线方程为,即x+y-4=0.点C到直线x+y-4=0的距离为,因此,S△ABC=×2×=5.故选:A7、B【解析】利用零点存在性定理判断即可.【详解】则函数一定存在零点的区间是故选:B【点睛】本题主要考查了利用零点存在性定理判断零点所在区间,属于基础题.8、C【解析】根据增函数的定义求解【详解】解:∵函数y=f(x)在R上为增函数,且f(2m)f(﹣m+9),∴2m﹣m+9,解得m3,故选:C9、D【解析】利用对数函数过定点求解.【详解】令,解得,,所以函数恒过定点,故选:D10、D【解析】函数,满足.由零点存在定理可知函数的一个零点所在的区间为.故选D.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,
这个c也就是方程f(x)=0的根.由此可判断根所在区间.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①④【解析】①由,解得.可得函数单调增区间;②函数在定义域内不具有单调性;③由,即可得出函数的最小正周期;④利用诱导公式可得函数,即可得出奇偶性【详解】解:①由,解得.可知:函数的单调增区间是,,,故①正确;②函数在定义域内不具有单调性,故②不正确;③,因此函数的最小正周期是,故③不正确;④函数是偶函数,故④正确其中正确的是①④故答案为:①④【点睛】本题考查了三角函数的图象与性质,考查了推理能力与计算能力,属于基础题12、【解析】求出的反函数即得【详解】因为函数的图象与的图象关于对称,所以是的反函数,的值域是,由得,即,所以故答案为:13、①②③④【解析】在①中,由EF∥BD,得EF∥平面ABCD;在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,从而得到面ACF⊥平面BEF;在③中,三棱锥E﹣ABF的体积与三棱锥A﹣BEF的体积相等,从而三棱锥E﹣ABF的体积为定值;在④中,令上底面中心为O,得到存在某个位置使得异面直线AE与BF成角30°【详解】由正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且,知:在①中,由EF∥BD,且EF⊄平面ABCD,BD⊂平面ABCD,得EF∥平面ABCD,故①正确;在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,而BE⊂面BDD1B1,BF⊂面BDD1B1,∴AC⊥平面BEF,∵AC⊂平面ACF,∴面ACF⊥平面BEF,故②正确;在③中,三棱锥E﹣ABF的体积与三棱锥A﹣BEF的体积相等,三棱锥A﹣BEF的底面积和高都是定值,故三棱锥E﹣ABF的体积为定值,故③正确;在④中,令上底面中心为O,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,可求解∠OBC1=300,故存在某个位置使得异面直线AE与BF成角30°,故④正确故答案为①②③④【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于中档题14、(1)(3)【解析】根据二分法所求零点的特点,结合图象可确定结果.【详解】用二分法只能求“变号零点”,(1),(3)中的函数零点不是“变号零点”,故不能用二分法求故答案为:(1)(3)15、【解析】由x∈(0,)求出,然后,画出正弦函数的大致图像,利用图像求解即可【详解】由题意因为x∈(0,),则,可画出函数大致的图则由图可知当时,方程有三个根,由解得,解得,且点与点关于直线对称,所以,点与点关于直线对称,故由图得,令,当为x∈(0,)时,解得或,所以,,,解得,,则,即.故答案为:【点睛】关键点睛:解题关键在于利用x∈(0,),则画出图像,并利用对称性求出答案三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)或.【解析】(1)首先根据三角函数的定义,求得三角函数值,再结合二倍角公式化简,求值;(2)利用角的变换,利用两角和的余弦公式,化简求值.【详解】解:由三角函数定义得,(1)(2)∵∴∴当时当时17、(1)或(2)【解析】(1)由题意,是方程的解,利用韦达定理求解,代入,结合一元二次函数、方程、不等式的关系求解即可;(2),代入转化不等式为,换元法求解的最大值即可【小问1详解】因为不等式的解集是,所以是方程的解由韦达定理解得故不等式为,即解得或故不等式得其解集为或【小问2详解】当时,在上恒成立,所以令,则令,则,由于均为的减函数故在上为减函数所以当时,取最大值,且最大值为3所以所以所以实数的取值范围为.18、(1)(2)或【解析】(1)根据奇偶函数的定义可得,列出方程,结合对数运算公式解方程即可;(2)根据指数、对数函数的性质求出函数,进而得到,解不等式即可.【小问1详解】∵是偶函数,∴,即,∴【小问2详解】由(1)知,∴又由解得,∴当且仅当x=0时等号成立,∴∴又∵恒成立,∴∴m≤-1或m≥319、(1);(2)【解析】(1)当时,求的解析式,令真数位置大于,解不等式即可求解;(2)由题意可得,整理可得只有一解,分别讨论,时是否符合题意,再分别讨论和有且只有一个是方程①的解,结合定义域列不等式即可求解.【小问1详解】当时,,由,即,因为,所以.故的定义域为.【小问2详解】因为函数只有一个零点,所以关于的方程①的解集中只有一个元素.由,可得,即,所以②,当时,,无意义不符合题意,当,即时,方程②的解为.由(1)得的定义域为,不在的定义域内,不符合题意.当是方程①的解,且不是方程①的解时,解得:,当是方程①的解,且不是方程①的解时,解得:且,无解.综上所述:的取值范围是.20、【解析】由,解得.根据非空集合,S是P的子集,可得,解得范围【详解】由,解得.,非空集合.又S是P的子集,,解得的取值范围是,【点睛】本题考查了不等式的解法和充分条件的应用,考查了推理能力与计算能力,意在考查学生对这些知识的理解掌握水平21、(1),;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024个人车位转让协议合同范本
- 2024年度园林绿化工程设计合同范例
- 2024厂房交易居间合同
- 2024厂房物业管理合同范文
- 20243年跨境化工原料采购协议协议一
- 2024年度企业人员派遣服务协议范本版B版
- 2024专项建筑工程协议附加条款一
- 2024专业变压器安装工程承包协议2
- 2024年度企业经营咨询服务合同
- 2024年度单位团购公寓协议样本
- 理论联系实际请阐述你对坚定中国特色社会主义文化自信的理解参考答案三
- 养老护理员职业技能培训实施方案
- 2024消防知识培训
- 长春大学《液压与气压传动》2023-2024学年第一学期期末试卷
- 医疗器械安装调试培训及验收方案
- 乡村医生培训课件内容
- 小学数学教师资格考试面试试题及解答参考
- 国家开放大学电大《动物繁殖基础》期末题库及答案
- ABC分类法例题98063教学资料
- 医疗预防保健机构的拟聘用证明
- 持续完善激励约束机制激发企业发展活力
评论
0/150
提交评论