版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,若函数有三个零点,则实数的取值范围是()A. B.C. D.2.已知函数,的图象与直线有两个交点,则的最大值为()A.1 B.2C. D.3.已知角α的终边经过点,则()A. B.C. D.4.函数的零点个数为()A.2 B.3C.4 D.55.函数(且)图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.6.已知函数:①;②;③;④;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是()A.②①③④ B.②③①④C.④①③② D.④③①②7.函数,的最小正周期是()A. B.C. D.8.函数,的图象大致是()A. B.C. D.9.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中酒精含量上升到.如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少要经过()小时才能驾驶.(参考数据:,)A.1 B.3C.5 D.710.已知,则的最小值是()A.5 B.6C.7 D.811.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间(分)的函数关系表示的图象只可能是()A. B.C. D.12.下列向量的运算中,正确的是A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:mg/L)与时间t(单位:h)间的关系为,其中,是正的常数.如果在前5h消除了10%的污染物,那么10h后还剩百分之几的污染物________.14.已知函数和函数的图像相交于三点,则的面积为__________.15.已知函数是定义在上的奇函数,当时,,则当时____16.经过原点并且与直线相切于点的圆的标准方程是__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知二次函数区间[0,3]上有最大值4,最小值0(1)求函数的解析式;(2)设.若在时恒成立,求k的取值范围18.设函数是定义域为R的奇函数.(1)求;(2)若,求使不等式对一切恒成立的实数k的取值范围;(3)若函数的图象过点,是否存在正数,使函数在上的最大值为2,若存在,求出a的值;若不存在,请说明理由.19.函数是奇函数.(1)求的解析式;(2)当时,恒成立,求m的取值范围20.化简求值:(1)已知都为锐角,,求的值;(2).21.已知函数(1)若,求实数a值;(2)若函数f(x)有两个零点,求实数a的取值范围22.设函数,将该函数的图象向左平移个单位长度后得到函数的图象,函数的图象关于y轴对称.(1)求的值,并在给定的坐标系内,用“五点法”列表并画出函数在一个周期内的图象;(2)求函数的单调递增区间;(3)设关于x的方程在区间上有两个不相等的实数根,求实数m的取值范围.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】函数有三个零点,转化为函数的图象与直线有三个不同的交点,画出的图象,结合图象求解即可【详解】因为函数有三个零点,所以函数的图象与直线有三个不同的交点,函数的图象如图所示,由图可知,,故选:A2、D【解析】由可得,然后可得的最大值为,即可得到答案.【详解】由可得,所以当时,由与有两个交点可得的最大值为所以则的最大值为故选:D3、D【解析】推导出,,,再由,求出结果【详解】∵角的终边经过点,∴,,,∴故选:D4、B【解析】先用诱导公式得化简,再画出图象,利用数形结合即可【详解】由三角函数的诱导公式得,函数的零点个数,即方程的根的个数,即曲线()与的公共点个数.在同一坐标系中分别作出图象,观察可知两条曲线的交点个数为3,故函数的零点个数为3故选:B.5、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误6、D【解析】根据指数函数、幂函数的性质进行选择即可.【详解】①:函数是实数集上的增函数,且图象过点,因此从左到右第三个图象符合;②:函数是实数集上的减函数,且图象过点,因此从左到右第四个图象符合;③:函数在第一象限内是减函数,因此从左到右第二个图象符合;④:函数在第一象限内是增函数,因此从左到右第一个图象符合,故选:D7、C【解析】利用正弦型函数周期公式直接计算作答.【详解】函数的最小正周期.故选:C8、A【解析】判断函数的奇偶性和对称性,以及函数在上的符号,利用排除法进行判断即可【详解】解:函数,则函数是奇函数,排除D,当时,,则,排除B,C,故选:A【点睛】本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性以及函数值的对应性,结合排除法是解决本题的关键.难度不大9、C【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.详解】设经过个小时才能驾驶,则,即由于在定义域上单调递减,∴∴他至少经过5小时才能驾驶.故选:C10、C【解析】,根据结合基本不等式即可得出答案.【详解】解:,因为,又,所以,则,当且仅当,即时,取等号,即的最小值是7.故选:C11、A【解析】利用特殊值法,圆柱液面上升速度是常量,表示圆锥漏斗中液体单位时间内落下相同的体积,当时间取分钟时,液面下降的高度与漏斗高度的比较.【详解】由于所给的圆锥形漏斗上口大于下口,当时间取分钟时,液面下降的高度不会达到漏斗高度的,对比四个选项的图象可得结果.故选:A【点睛】本题主要考查了函数图象的判断,常利用特殊值和函数的性质判断,属于中档题.12、C【解析】利用平面向量的三角形法则进行向量的加减运算,即可得解.【详解】对于A,,故A错误;对于B,,故B错误;对于C,,故C正确;对于D,,故D错误.故选:C.【点睛】本题考查平面向量的三角形法则,属于基础题.解题时,要注意向量的起点和终点.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、81%【解析】根据题意,利用函数解析式,直接求解.【详解】由题意可知,,所以.所以10小时后污染物含量,即10小时后还剩81%的污染物.故答案为:81%14、【解析】解出三点坐标,即可求得三角形面积.【详解】由题:,,所以,,所以,.故答案为:15、【解析】设则得到,再利用奇函数的性质得到答案.【详解】设则,函数是定义在上的奇函数故答案为【点睛】本题考查了利用函数的奇偶性计算函数表达式,属于常考题型.16、【解析】设圆心坐标,则,,,根据这三个方程组可以计算得:,所以所求方程为:点睛:设出圆心与半径,根据题意列出方程组,解出圆心和半径即可三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)根据二次函数的性质讨论对称轴,即可求解最值,可得解析式(2)求解的解析式,令,则,问题转化为当u∈[,8]时,恒成立,分离参数即可求解【详解】(1)其对称轴x=1,x∈[0,3]上,∴当x=1时,取得最小值为﹣m+n+1=0①当x=3时,取得最大值为3m+n+1=4②由①②解得:m=1,n=0,故得函数的解析式为:;(2)由,令,,则,问题转化为当u∈[,8]时,恒成立,即u2﹣4u+1﹣ku2≤0恒成立,∴k设,则t∈[,8],得:1﹣4t+t2=(t﹣2)2﹣3≤k当t=8时,(1﹣4t+t2)max=33,故得k的取值范围是[33,+∞).18、(1)(2)(3)【解析】(1)根据是定义域为R的奇函数,由求解;(2),得到b的范围,从而得到函数的单调性,将对一切恒成立,转化为对一切恒成立求解;(3)根据函数的图象过点,求得b,得到,令,利用复合函数求最值的方法求解.【小问1详解】解:函数是定义域为R的奇函数,所以,解得,此时,满足;【小问2详解】因为,所以,解得,所以在R上是减函数,等价于,所以,即,又因为不等式对一切恒成立,所以对一切恒成立,所以,解得,所以实数k的取值范围是;【小问3详解】因为函数的图象过点,所以,解得,则,令,则,当时,是减函数,,因为函数在上的最大值为2,所以,即,解得,不成立;当时,是增函数,,因为函数在上最大值为2,所以,即,解得或(舍去),所以存在正数,使函数在上的最大值为2.19、(1);(2)【解析】(1)直接由奇函数的定义列方程求解即可;(2)由条件得在恒成立,转为求不等式右边函数的最小值即可得解.【详解】(1)函数是奇函数,,故,故;(2)当时,恒成立,即在恒成立,令,,显然在的最小值是,故,解得:【点睛】本题主要考查了奇函数求参及不等式恒成立求参,涉及参变分离的思想,属于基础题.20、(1),(2)0.【解析】(1)先计算出,的值,然后根据角的配凑以及两角差的余弦公式求解出的值;(2)利用诱导公式以及两角和的正切公式结合正、余弦的齐次式计算化简原式【小问1详解】因为,都为锐角,,,所以,,则【小问2详解】原式21、(1)(2)【解析】(1)根据即可求出实数a的值;(2)令,根据由求得的值,再根据正弦函数的性质分析的取值情况,结合题意即可得出答案.【小问1详解】解:,∴,∴;【小问2详解】解:令,则,由得,∵在[-,]上是增函数,在[,]上是减函数,且,∴时,x有两个值;或时,x有一个值,其它情况,x值不存在,∴时函数f(x)只有1个零点,时,,要f(x)有2个零点,有,∴时,,要f(x)有2个零点,有,综上,f(x)有两个零点时,a的取值范围是.22、(1),图象见解析;(2)(3)【解析】(1)化简解析式,通过三角函数图象变换求得,结合关于轴对称求得,利用五点法作图即可;(2)利用整体代入法求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年街舞教练专属聘用协议3篇
- 八年级美术教学工作计划
- 2024年网络营销服务外包合同
- 2024年标准版劳动者服务协议范本版B版
- 身体原因辞职报告【10篇】
- 举办毕业晚会的策划设计方案6篇
- 2024年绿植销售与安装服务协议
- 动感课堂2016年春九年级化学下册 第八单元 金属和金属材料 课题2 金属的化学性质教学实录 (新版)新人教版
- 高中语文教师个人教学总结报告
- 2024年股权预先转让协议范本版
- 2024-2025学年人教版数学五年级上册期末检测试卷(含答案)
- 工程设计-《工程勘察设计收费标准》(2002年修订本)-完整版
- 物流系统仿真技术智慧树知到期末考试答案章节答案2024年山东交通学院
- 人教部编版三年级上册语文【选择题】专项复习训练练习100题
- 临床试验样本量简易计算器
- 给我店周边各企事业单位领导赠送体验券方案的请示
- 世界气候分布图(空白轮廓底图)
- 山东省建设工程质量监督档案样表
- 天津市工伤职工停工留薪期确定通知书
- 小学二年级数学期末口试模拟试题
- 中国地理分区空白图(共5页)
评论
0/150
提交评论