浙江诸暨市牌头中学2023届数学高一上期末学业质量监测试题含解析_第1页
浙江诸暨市牌头中学2023届数学高一上期末学业质量监测试题含解析_第2页
浙江诸暨市牌头中学2023届数学高一上期末学业质量监测试题含解析_第3页
浙江诸暨市牌头中学2023届数学高一上期末学业质量监测试题含解析_第4页
浙江诸暨市牌头中学2023届数学高一上期末学业质量监测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.关于三个数,,的大小,下面结论正确的是()A. B.C. D.2.在平面直角坐标系中,直线的斜率是()A. B.C. D.3.设R,则“>1”是“>1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.命题:,的否定是()A., B.,C., D.,5.下列四个函数中,与函数相等的是A. B.C. D.6.过点且平行于直线的直线方程为A. B.C. D.7.焦点在y轴上,焦距等于4,离心率等于的椭圆的标准方程是A. B.C. D.8.()A. B.C. D.19.将函数的图象向左平移个单位长度得到函数的图象,下列说法正确的是()A.是奇函数 B.的周期是C.的图象关于直线对称 D.的图象关于点对称10.已知点,点在轴上且到两点的距离相等,则点的坐标为A.(-3,0,0) B.(0,-3,0)C.(0,0,3) D.(0,0,-3)11.已知两直线,.若,则的值为A.0 B.0或4C.-1或 D.12.已知函数f(x)=Acos(ωx+φ)的图像如图所示,,则f(0)=()A. B.C. D.二、填空题(本大题共4小题,共20分)13.直线3x+2y+5=0在x轴上的截距为_____.14.如图所示,正方体的棱长为,分别是棱,的中点,过直线的平面分别与棱.交于,设,,给出以下四个命题:①平面平面;②当且仅当时,四边形的面积最小;③四边形周长,是单调函数;④四棱锥的体积为常函数;以上命题中真命题的序号为___________.15.已知圆锥的表面积为,且它的侧面展开图是一个半圆,求这个圆锥的体积是______16.函数的最大值为___________.三、解答题(本大题共6小题,共70分)17.已知函数是上的奇函数.(1)求的值;(2)比较与0的大小,并说明理由.18.函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)当x∈[-2,2]时,求f(x)的值域.19.(1)计算:(2)若,,求的值.20.已知函数(1)求的单调增区间;(2)当时,求函数最大值和最小值.21.计算下列各式的值(1);(2)已知,求22.已知全集,集合,集合.条件①;②是的充分条件;③,使得(1)若,求;(2)若集合A,B满足条件__________(三个条件任选一个作答),求实数m的取值范围

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】引入中间变量0和2,即可得到答案;【详解】,,,,故选:D2、A【解析】将直线转化成斜截式方程,即得得出斜率.【详解】解:由题得,原式可化为,斜率.故选:A.3、A【解析】由可得成立,反之不成立,所以“”是“”的充分不必要条件考点:充分条件与必要条件4、D【解析】由全称量词命题与存在量词命题的否定判断即可.【详解】由全称量词命题与存在量词命题的否定,可知原命题的否定为,故选:D5、D【解析】分别化简每个选项的解析式并求出定义域,再判断是否与相等.【详解】A选项:解析式为,定义域为R,解析式不相同;B选项:解析式为,定义域为,定义域不相同;C选项:解析式为,定义域为,定义域不相同;D选项:解析式为,定义域为R,符合条件,答案为D.【点睛】函数相等主要看:(1)解析式相同;(2)定义域相同.属于基础题.6、A【解析】解析:设与直线平行直线方程为,把点代入可得,所以所求直线的方程为,故选A7、C【解析】设椭圆方程为:,由题意可得:,解得:,则椭圆的标准方程为:.本题选择D选项8、B【解析】先利用诱导公式把化成,就把原式化成了两角和余弦公式,解之即可.【详解】由可知,故选:B9、D【解析】利用三角函数图象变换可得函数的解析式,然后利用余弦型函数的基本性质逐项判断可得出正确选项.【详解】由题意可得,对于A,函数是偶函数,A错误:对于B,函数最小周期是,B错误;对于C,由,则直线不是函数图象的对称轴,C错误;对于D,由,则是函数图象的一个对称中心,D正确.故选:D.10、D【解析】设点,根据点到两点距离相等,列出方程,即可求解.【详解】根据题意,可设点,因为点到两点的距离相等,可得,即,解得,所以整理得点的坐标为.故选:D.11、B【解析】分两种情况:一、斜率不存在,即此时满足题意;二、斜率存在即,此时两斜率分别为,,因为两直线平行,所以,解得或(舍),故选B考点:由两直线斜率判断两直线平行12、C【解析】根据所给图象求出函数的解析式,即可求出.【详解】设函数的周期为,由图像可知,则,故ω=3,将代入解析式得,则,所以,令,代入解析式得,又因为,解得,,.故选:C.【点睛】本题考查根据三角函数的部分图象求函数的解析式,属于基础题.二、填空题(本大题共4小题,共20分)13、【解析】直接令,即可求出【详解】解:对直线令,得可得直线在轴上截距是,故答案:【点睛】本题主要考查截距的定义,需要熟练掌握,属于基础题14、①②④【解析】①连接,在正方体中,平面,所以平面平面,所以①是真命题;②连接MN,因为平面,所以,四边形MENF的对角线EF是定值,要使四边形MENF面积最小,只需MN的长最小即可,当M为棱的中点时,即当且仅当时,四边形MENF的面积最小;③因为,所以四边形是菱形,当时,的长度由大变小,当时,的长度由小变大,所以周长,是单调函数,是假命题;④连接,把四棱锥分割成两个小三棱锥,它们以为底,为顶点,因为三角形的面积是个常数,到平面的距离也是一个常数,所以四棱锥的体积为常函数;命题中真命题的序号为①②④考点:面面垂直及几何体体积公式15、【解析】设圆锥母线长为,底面圆半径长,侧面展开图是一个半圆,此半圆半径为,半圆弧长为,表面积是侧面积与底面积的和,则圆锥的底面直径圆锥的高点睛:本题主要考查了棱柱,棱锥,棱台的侧面积和表面积的知识点.首先,设圆锥母线长为,底面圆半径长,然后根据侧面展开图,分析出母线与半径的关系,然后求解其底面体积即可16、【解析】根据二次函数的性质,结合给定的区间求最大值即可.【详解】由,则开口向上且对称轴为,又,∴,,故函数最大值为.故答案为:.三、解答题(本大题共6小题,共70分)17、(1);(2)【解析】(1)由奇函数的性质列式求解;(2)先判断函数的单调性,然后求解,利用单调性与奇偶性即可判断出.【小问1详解】因为是上的奇函数,所以,得时,,满足为奇函数,所以.【小问2详解】设,则,因,所以,所以,即,所以函数在上为增函数,又因为为上的奇函数,所以函数在上为增函数,因为,即,所以,因为是上的奇函数,所以,所以【点睛】判断复合函数的单调性时,一般利用换元法,分别判断内函数与外函数的单调性,再由同增异减的性质判断出复合函数的单调性.18、(1);(2).【解析】(1)由最大值求出,由周期求出,由求出,进而求得的解析式;(2)由的范围求得的范围,从而得到的范围,进而求得的值域.【详解】(1)由图象可知,,,由可得,又,所以,所以.(2)当时,,所以,故的值域为.19、(1);(2).【解析】(1)利用分数指数幂运算法则分别对每一项进行化简,然后合并求解;(2)先利用已知条件,把m、n表示出来,代入要求解的式子中,利用对数的运算法则化简即可.【详解】(1)原式(2)因为,,所以,,所以20、(1)单调递增区间为;(2),.【解析】(1)利用和差公式和倍角公式把化为,然后可解出答案;(2)求出的范围,然后由正弦函数的知识可得答案.【详解】(1)由可得单调递增区间为(2),即时,即时,21、(1)(2)1【解析】(1)根据对数和指数幂的运算性质计算即可得出答案.(2)利用诱导公式化简目标式,然后分子分母同时除以,代入即可得出答案.【小问1详解】原式=;【小问2详解】原式=.22、(1)(2)或【解析】(1)可将带入集合中,得到集合的解集,即可求解出答案;(2)可根据题意中三个不同的条件,列出集合与集合之间的关系,即可完成求解.【小问1详解】当时,集合,集合,所以;【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论