



版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列中,已知,且,则数列的前项和中最小的是()A.或 B. C. D.2.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.对于下列说法:①越小,则国民分配越公平;②设劳伦茨曲线对应的函数为,则对,均有;③若某国家某年的劳伦茨曲线近似为,则;④若某国家某年的劳伦茨曲线近似为,则.其中正确的是:A.①④ B.②③ C.①③④ D.①②④3.已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为()A. B.C. D.4.如图所示是某年第一季度五省GDP情况图,则下列说法中不正确的是()A.该年第一季度GDP增速由高到低排位第3的是山东省B.与去年同期相比,该年第一季度的GDP总量实现了增长C.该年第一季度GDP总量和增速由高到低排位均居同一位的省份有2个D.去年同期浙江省的GDP总量超过了4500亿元5.在中,点D是线段BC上任意一点,,,则()A. B.-2 C. D.26.已知复数是正实数,则实数的值为()A. B. C. D.7.已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为()A. B.3 C.2 D.8.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④9.胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以倍的塔高,恰好为祖冲之发现的密率.设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为A. B.C. D.10.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为()A. B. C. D.11.如果实数满足条件,那么的最大值为()A. B. C. D.12.数列满足:,,,为其前n项和,则()A.0 B.1 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.在中,角,,的对边分别是,,,若,,则的面积的最大值为______.14.设集合,,则____________.15.某种圆柱形的如罐的容积为个立方单位,当它的底面半径和高的比值为______.时,可使得所用材料最省.16.如图是一个算法流程图,若输出的实数的值为,则输入的实数的值为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是递增的等比数列,,且、、成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求数列的前项和.18.(12分)如图,直线y=2x-2与抛物线x2=2py(p>0)交于M1,M2两点,直线y=p2与(1)求p的值;(2)设A是直线y=p2上一点,直线AM2交抛物线于另一点M3,直线M1M19.(12分)如图1,与是处在同-个平面内的两个全等的直角三角形,,,连接是边上一点,过作,交于点,沿将向上翻折,得到如图2所示的六面体(1)求证:(2)设若平面底面,若平面与平面所成角的余弦值为,求的值;(3)若平面底面,求六面体的体积的最大值.20.(12分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知直线的参数方程为(为参数),曲线的极坐标方程为;(1)求直线的直角坐标方程和曲线的直角坐标方程;(2)若直线与曲线交点分别为,,点,求的值.21.(12分)(选修4-4:坐标系与参数方程)在平面直角坐标系,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)过点且与直线平行的直线交于,两点,求点到,的距离之积.22.(10分)在直角坐标平面中,已知的顶点,,为平面内的动点,且.(1)求动点的轨迹的方程;(2)设过点且不垂直于轴的直线与交于,两点,点关于轴的对称点为,证明:直线过轴上的定点.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【答案解析】
设公差为,则由题意可得,解得,可得.令
,可得
当时,,当时,,由此可得数列前项和中最小的.【题目详解】解:等差数列中,已知,且,设公差为,
则,解得
,.
令
,可得,故当时,,当时,,
故数列前项和中最小的是.故选:C.【答案点睛】本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.2.A【答案解析】
对于①,根据基尼系数公式,可得基尼系数越小,不平等区域的面积越小,国民分配越公平,所以①正确.对于②,根据劳伦茨曲线为一条凹向横轴的曲线,由图得,均有,可得,所以②错误.对于③,因为,所以,所以③错误.对于④,因为,所以,所以④正确.故选A.3.D【答案解析】
先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【题目详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以,因为的递增区间是:,,由,,得:,,所以函数的单调递增区间为().故选:D.【答案点睛】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.4.D【答案解析】
根据折线图、柱形图的性质,对选项逐一判断即可.【题目详解】由折线图可知A、B项均正确,该年第一季度总量和增速由高到低排位均居同一位的省份有江苏均第一.河南均第四.共2个.故C项正确;.故D项不正确.故选:D.【答案点睛】本题考查折线图、柱形图的识别,考查学生的阅读能力、数据处理能力,属于中档题.5.A【答案解析】
设,用表示出,求出的值即可得出答案.【题目详解】设由,,.故选:A【答案点睛】本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.6.C【答案解析】
将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【题目详解】因为为正实数,所以且,解得.故选:C【答案点睛】本题考查复数的基本定义,属基础题.7.D【答案解析】
本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可.【题目详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,,代入上式子中,得到,结合离心率满足,即可得出,故选D.【答案点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难.8.D【答案解析】
利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择.【题目详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选:D【答案点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.9.D【答案解析】
设胡夫金字塔的底面边长为,由题可得,所以,该金字塔的侧棱长为,所以需要灯带的总长度约为,故选D.10.D【答案解析】
设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【题目详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【答案点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.11.B【答案解析】
解:当直线过点时,最大,故选B12.D【答案解析】
用去换中的n,得,相加即可找到数列的周期,再利用计算.【题目详解】由已知,①,所以②,①+②,得,从而,数列是以6为周期的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以,.故选:D.【答案点睛】本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
化简得到,,根据余弦定理和均值不等式得到,根据面积公式计算得到答案.【题目详解】,即,,故.根据余弦定理:,即.当时等号成立,故.故答案为:.【答案点睛】本题考查了三角恒等变换,余弦定理,均值不等式,面积公式,意在考查学生的综合应用能力和计算能力.14.【答案解析】
先解不等式,再求交集的定义求解即可.【题目详解】由题,因为,解得,即,则,故答案为:【答案点睛】本题考查集合的交集运算,考查解一元二次不等式.15.【答案解析】
设圆柱的高为,底面半径为,根据容积为个立方单位可得,再列出该圆柱的表面积,利用导数求出最值,从而进一步得到圆柱的底面半径和高的比值.【题目详解】设圆柱的高为,底面半径为.∵该圆柱形的如罐的容积为个立方单位∴,即.∴该圆柱形的表面积为.令,则.令,得;令,得.∴在上单调递减,在上单调递增.∴当时,取得最小值,即材料最省,此时.故答案为:.【答案点睛】本题考查函数的应用,解答本题的关键是写出表面积的表示式,再利用导数求函数的最值,属中档题.16.【答案解析】
根据程序框图得到程序功能,结合分段函数进行计算即可.【题目详解】解:程序的功能是计算,若输出的实数的值为,则当时,由得,当时,由,此时无解.故答案为:.【答案点睛】本题主要考查程序框图的识别和判断,理解程序功能是解决本题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ);(Ⅱ).【答案解析】
(Ⅰ)设等比数列的公比为,根据题中条件求出的值,结合等比数列的通项公式可得出数列的通项公式;(Ⅱ)求得,然后利用裂项相消法可求得.【题目详解】(Ⅰ)设数列的公比为,由题意及,知.、、成等差数列成等差数列,,,即,解得或(舍去),.数列的通项公式为;(Ⅱ),.【答案点睛】本题考查等比数列通项的求解,同时也考查了裂项求和法,考查计算能力,属于基础题.18.(1)p=4;(2)OA⋅【答案解析】试题分析:(1)联立直线的方程和抛物线的方程y=2x-2x2=2py,化简写出根与系数关系,由于直线y=p2平分∠M1FM2,所以kM1F+kM2F=0,代入点的坐标化简得4-(2+p2)⋅x试题解析:(1)由y=2x-2x2=2py设M1(x1,因为直线y=p2平分∠M所以y1-p所以4-(2+p2)⋅x1+x(2)由(1)知抛物线方程为x2=8y,且x1+x设M3(x3,x328所以x2+x整理得:x2由B,M3,②式两边同乘x2得:x即:16x由①得:x2x3即:16(x2+所以OA⋅考点:直线与圆锥曲线的位置关系.【方法点晴】本题考查直线与抛物线的位置关系.阅读题目后明显发现,所有的点都是由直线和抛物线相交或者直线与直线相交所得.故第一步先联立y=2x-2x2=2py,相当于得到M1,M2的坐标,但是设而不求.根据直线y=p219.(1)证明见解析(2)(3)【答案解析】
根据折叠图形,,由线面垂直的判定定理可得平面,再根据平面,得到.(2)根据,以为坐标原点,为轴建立空间直角坐标系,根据,可知,,表示相应点的坐标,分别求得平面与平面的法向量,代入求解.设所求几何体的体积为,设为高,则,表示梯形BEFD和ABD的面积由,再利用导数求最值.【题目详解】(1)证明:不妨设与的交点为与的交点为由题知,,则有又,则有由折叠可知所以可证由平面平面,则有平面又因为平面,所以....(2)解:依题意,有平面平面,又平面,则有平面,,又由题意知,如图所示:以为坐标原点,为轴建立如图所示的空间直角坐标系由题意知由可知,则则有,,设平面与平面的法向量分别为则有则所以因为,解得设所求几何体的体积为,设,则,当时,,当时,在是增函数,在上是减函数当时,有最大值,即六面体的体积的最大值是【答案点睛】本题主要考查线线垂直,线面垂直,面面垂直的转化,二面角的向量求法和空间几何体的体积,还考查了转化化归的思想和运算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 62680-1-2:2024 EN-FR Universal serial bus interfaces for data and power - Part 1-2: Common components - USB Power Delivery specification
- 2025-2030年中国风电场行业竞争现状及投资战略研究报告
- 2025-2030年中国非食用植物油行业发展状况及营销战略研究报告
- 2025-2030年中国雪茄行业运行状况及发展趋势预测报告
- 2025年湖北省建筑安全员C证考试(专职安全员)题库附答案
- 2025-2030年中国砂岩行业运行现状与发展策略分析报告
- 2025年安全员-B证(项目经理)考试题库
- 河南职业技术学院《管理科学》2023-2024学年第二学期期末试卷
- 合肥职业技术学院《语音信息处理》2023-2024学年第二学期期末试卷
- 庆阳职业技术学院《电子商务网站设计与管理》2023-2024学年第二学期期末试卷
- 【人教版化学】必修1 知识点默写小纸条(答案背诵版)
- 危险化学品目录(2024版)
- 脑卒中-脑卒中的康复治疗
- 疫情统计学智慧树知到答案2024年浙江大学
- 下肢深静脉血栓形成静脉置管溶栓术后-用药及出血观察护理-PPT
- 16万吨_年液化气综合利用装置废酸环保综合利用项目环境报告书
- T∕CAEPI 43-2022 电絮凝法污水处理技术规程
- 农村商业银行合规风险管理暂行办法
- 人教版八年级数学第二学期教学计划+教学进度表
- 油管、套管等规格对照表
- IEST-RP-CC0053
评论
0/150
提交评论