王燕时间序列分析第五章SAS程序_第1页
王燕时间序列分析第五章SAS程序_第2页
王燕时间序列分析第五章SAS程序_第3页
王燕时间序列分析第五章SAS程序_第4页
王燕时间序列分析第五章SAS程序_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

282278281271277278279283284282283275280280279278283278270275273273272275273第一题datayx_51;inputx@@;difx=dif(x);t=l+_n_-l;cards;304303282278281271277278279283284282283275280280279278283278270275273273272275273278277279278270268272273279275280275273272273272273271272271273277274274272280282292295295273277274274272280282292295295294290291288288290253288289291293293290288287289292288288285282286286287284283286282287286287292292294291288289procgplot;plotx*t=ldifx*t=2;symbollc=redv=circlei=join;svmbo【Zc=yell.owv=stari=join;run;procarima;identifyvar=x(1);estimatep=l;run;结果如下时序图:difx10--10--20-1020304050607080901C0110TOC\o"1-5"\h\zSAS系统201徊05月06曰星期二下午10时47分58秒1TheARIMAProcedureNameofVariable=xPeriod(s)ofDifferencing1MeanofWorkingSeries-0.14151StandardDeviation3.614537NumberofObservations106Observation(s)eliminatedbydifferencing1Autocorrelations0113.064881-2.0202141.00000-.15463.###qiinipipipipipipipipiprpipipipipipip00.09712920.2518470.019280.0994243-0.303468-.06915:H60.0384584-1.166473-.089280.0999125-0.407940-.03122・*0.10066261.3669680.10463出出:0.10075372.4610310.18837帆**0.1017738-0.727748-.05570:溶0.10501090.6224540.04764*:0.10528910-1.716200-.13136.###0.105492110.8241060.06308卅:0.107024120.1365720.010450.107374130.5352800.04097卅:0.10738414-1.830163-.14008.###0.107531152.0025060.153270.10923916-1.86560?-.14280.###0.1112491?-0.535607-.04100・此0.112965180.8495720.06503*:0.113106190.4733600.03623卅・0.113458200.5607460.04292卅・0.11356?21-2.602490-.199200.11372022-0.104103-.007970.11696523-0.666324-.05100:北0.11697024-0.537108-.04111・«0.117180CovarianceCorrelation-198765432101234567891StdErrormarkstwostandarderrors

LagCorrelation-•1987654321()123456789110.125672-0.05929:*30.Q240240.1747150.038176-0.172427-0.2190680.08852脚.9-0.0167110-0.0015711-0.09685:榔120.01518130.09241院:140.0652815-0.18306160.Q7964170.08334林.180.Q1168SAS条貌”14年05月06”14年05月06口星期二卜午10射4?行58杪2CorreIation■■198765432101234567891-0.05799・*.0.01034.0.176260.08267-0.0134200.08638PartialAutocorrelationsjorrelation-•1987654321()1234567891-0.15463.m-0.00475-0.06853・*-0.11359-0.06560・«0.087420.21551****-0.004820.04333-0.077570.078360.04084-0.00237-0.199340.12464林:-0.09053:榔-0.08859.米-0.014180.065430.06544-0.18418娜娜-0.120960.04340-0.08493Lag192021222324Lag123456789101112131415161718192021222324ParameterMUAR1,1ConditionalEstimate-0.14201-0.15478LeastStandardErrortValueApproxPr>ItlLag0.30359-0.470.640900.09692-1.600.11331SquaresEstimationTheARIMAProcedureConstantEstParameterMUAR1,1ConditionalEstimate-0.14201-0.15478LeastStandardErrortValueApproxPr>ItlLag0.30359-0.470.640900.09692-1.600.11331SquaresEstimationTheARIMAProcedureConstantEstimateVarianceEstimateSidErrorEstirnateAICSBCNumberofResidualsAICandSBCdonotinclude-0.1639912.997443.605196574.6596579.9885106logdeterminant.CorreIationsofParameter

EstimatesParameterMUAR1,1MUARIJ1.0000.0030.0031.000ToChi-Pr>LagSquareDFChiSqAuiocorre1alions64.3150.5056-0.001-0.015-0.083-0.110-0.0300.1341211.35110.41480.205-0.0210.020-0.1200.0470.0281818.00170.38890.023-0.1160.116-0.132-0.0550.0682425.30230.33520.0550.020-0.204-0.048-0.061-Q.054AutocorrelationCheckofResidualsModeIforvariableEstimatedMeanPeriod(s)ofDifferencing:-0.14201AutoregressiveFactorsFactor1:14-0.15478B^(1)通过原始数据的时序图可以明显看出,此序列非平稳,因而对序列进行一阶差分。从一阶差分后的自相关图可以看出,一阶差分后的序列的自相关系数一直都比较小,始终控制在二倍标准差以内,可以认为一阶差分后的序列始终都在零轴附近波动,因而可以认为一阶差分后的序列为随机性很强的平稳序列,另外通过一阶差分后的时序图也可以看出,一阶差分后的序列平稳,且LB统计量对应ToLagChi-SquareDFPr>ChiSqAutocorrelations65.4460.4890-0.1550.019-0.069-0.089-0.0310.1051212.72120.38960.188-0.0560.048-0.1310.0630.0101821.69180.24620.041-0.1400.153-0.143-0.0410.0652428.05240.25790.0360.043-0.199-0.008-0.051-0.041

的P值大于a=0.05,因而认为一阶差分后的序列为白噪声序列。由于一阶差分后的序列为平稳的白噪声序列,因而此时间序列拟合ARIMA(0,1,0)模型,即随机游走模型,模型为:Xt=Xt_i+&所以下一期的预测值为289第二题datayx_52;inputx@@;t=1949+_n_-l;difx=dif(x);cards;5589.009983.0011083.0019376.0024605.0027421.0038109.0054410.0036418.0041786.0049100.0054951.0043089.0076471.0080873.0083111.0078772.0088955.00111853.00111279.00107673.00113495.00118784.00140653.00144948.00151489.00150681.00152853.00165982.00171024.00172149.00164309.00167554.00224248.00245017.00269296.00288224.00314237.0013217.0067219.0042095.0084066.00124074.00157627.00178581.00330354.0016131.0044988.0053120.0095309.00130709.00162794.00193189.0019288.0035261.0068132.00110119.00135635.00163216.00204956.00procgplot;plot5589.009983.0011083.0019376.0024605.0027421.0038109.0054410.0036418.0041786.0049100.0054951.0043089.0076471.0080873.0083111.0078772.0088955.00111853.00111279.00107673.00113495.00118784.00140653.00144948.00151489.00150681.00152853.00165982.00171024.00172149.00164309.00167554.00224248.00245017.00269296.00288224.00314237.0013217.0067219.0042095.0084066.00124074.00157627.00178581.00330354.0016131.0044988.0053120.0095309.00130709.00162794.00193189.0019288.0035261.0068132.00110119.00135635.00163216.00204956.001"19501彻197019的199020002010t从时序图可以看出,时间序列非平稳,且随着时间而呈现明显的上升趋势,因而对序列采用一阶差分:一阶差分后的时序图:^0012345678901234SAS系统TheARIMAProcedureNameofVariable=xPeriod(s)ofDifferencingMeanofWorkingSeriesStandardDeviationNumberofObservationsObservation(s)eliminatedbydifferencing201徊05月0?曰15504.4928441.125591星期三下午11时03分57秒AutocorrelationsCovarianceCorrelation-•1987654321(1234567891StdError712525933804091511714363526021780009279746449123345883819318-10165750-1125154?-6251580-117128?38508961786424-13153261.000000.505820.164410.073820.112290.136790.173110.05360-.14267-.15791-.08774-.016440.054050.0250?-.01846..m・娜<!•*1*•»,•»,<1*•»,*»••»,•■•<1*•»,ilfibilfibalfilfilfilBilfibQIQIQIfljeQIQIQI溯帆・溯・溯卅・溯帆・溯・*:溯・00.1301890.1600690.1629060.1634720.1647740.1666880.1697080.1698940.1720120.1744520.1751980.1752240.1755060.175567markstwostandarderrorsg12345678901234Correlation-198785432101234587891-0.452230.083650.04221*.-0.13657・相^0.07544卅卅:-0.08184・*出-0.07917・娜0.15808-0.02016Q.005930.05993:■Q.088830.04124:-0.02819.出PartialAutocorrelationsCorrelation•198785432101234587891InverseAutocorrelations0.50582-Q.122890.058130.090440.050400.10396-0.11363-0.18030.脚出.用出■出.用出■・歌出SAS系统TheARIMAProcedurePartialAutocorrelations9-0.0047310-0.02212110.02688卅:120.0873513-0.01434140.03958卅:LagCorrelation-198765432101234567891AutocorrelationCheckforWhiteNoiseToLagChi-SquareDFPr>pu;O-Un1BqAutocorreiations--61222.0426.286120.00120.5060.1640.00980.054-0.1430.074-0.1580.112-0.0880.137-0.0160.1730.054Conditiona1LeastSquaresEstimationParameterStandardEstimateErrortValueApproxPr>|t|LagMUMAI,15536.61430.1-0.483490.116233.8?-4.160.00030.000101ConstantEstimateVarianceEstimateStdErrorEstimateAICSBCNumberofResiduals卅AICandSBCdonotinc1ude5536.65557207937464.6361221.7161225.87159logdeterminant.CorrelationsofParameterEstimatesParameterMUMAI,1MUMAIJ1.0000.0030.0031.000ToLagChi-SquareDFPr>d•c—A..上__—I.-12Ul11Huiuuur【bdi64.6950.45520.0940.156-0.0220.1150.050127.25110.77850.053-0.132-0.037-0.046-0.026189.33170.92940.023-0.0490.048-0.112-0.0442410.6?230.98830.088-0.030-0.0710.013-0.023AutocorrelationCheckofResiduals0.1510.0580.070-0.00?ModeIforvariable5536.651Estimated5536.651Period(s)ofDifferencingSAS系统2014^05月叩日星期三下午11时03分57秒6TheARINAProcedureMovingAverageFactorsFactor1:1+Q.48349ForecastsforvariablexObsForecastStdError嘛ConfidenceLimits61337276.98377464.6361322646.565?351907.401762342813.633613354.667316638.9869368988.300463348350.283617348.587314347.6774382352.8888B4353886.933620581.541313547.8548394226.012365359423.583523371.482313616.3208405230.8463通过原始数据的时序图可以明显看出,此序列非平稳,随着时间呈现上升趋势,因而对序列进行一阶差分。从一阶差分后的自相关图可以看出,一阶差分后的序列的自相关系数一阶截尾,拟合ARIMA(0,1,1)模型,得到模型:Xt-Xt」=(l+0.48349B)et残差的检验显示,残差序列通过白噪声检验,参数显著性检验显示参数显著,说明模型拟合良好,对序列相关信息提取充分。得到2009〜2013年铁路货运量的预测结果如下:铁路货运与测量2009337276.98372010342813.63362011348350.28362012353886.93362013359423.5835第三题;datayx_53;inputx@@;difx=dif(difl2(x));t=intnx(Tmonth1,f01janl973Tdf;formattdate.;cards;9007.008106.008928.009137.0010017.0010826.0011317.0010744.009713.009938.009161.008927.007750.006981.008038.008422.008714.009512.0010120.009823.008743.009129.008710.008680.008162.007306.008124.007870.009387.009556.0010053.009620.008285.008433.008160.008034.007717.007461.007776.007925.008634.008945.0010078.009179.008037.008488.007874.008647.007792.006957.007726.008106.008850.009299.0010625・009302.008314.008850.008265.008796.007836.006892.007791.008129.009115.009434.0010484.009827.009110.009070.008633.009240.00.procgplot;plotx*t=ldifx*t=2;symbollc=coralv=circlei=join;symbol2c=bluev=stari=join;run;procarima;identifyvar=x(1,12);estimatep=lq=(1)(12);run;

一阶12步差分后的时序图:difx200YTTTTTTTYrrTTTTrYrrTTrTTyrrrrrTTp-rTTrrrYrTTTrrrprTTrTTTYrrTTTTrYrrrTTrrYTTrrTTrprTTrrrrYTTTTrrrpTTTTTTTp-rrrTTrYTTrrrTTyrrrTTrrp-mTTrpTTTrTTYO1JAN73O1MAY7301SCP7301JAH7401MAY7401$EP74O1JAN750lHkY7501SCP7501JAH7601IUY760l$£P7601JAN7701WAY77O1$£P7701JJW7801VAY7801SEP7801JAM79院系统TheARIMAProcedureNameofVariable=xTOC\o"1-5"\h\zPeriod(s)ofDifferencing1,12MeanofWorkingSeries28.83051StandardDeviation390.7296NunberofObservations59Observation(s)eliminatedbydifferencing13LagAutocorrelationsLag01152670■54326.5281.00000-.355840如如如如如如QIQIQIQIQIQIQt«|»«|*■•«T*<1*<1*,1*<1*<1*•!,U*U*!•*1**1*.00.1301892-15071.682-.09872・**0.145745314584.5680.09553帆:0.1468744-17177.694-.11252:w02510.041530.149367617420.9080.11411米卅・0.1495627-31164.460-.20413・$$$$0.1510318-1087.513-.007120.155637915277.1750.10007帆:0.15564210-12434.670-.08145:w0.156729II23801.3630.13521卅卅X出・0.15744512■50866.898-.33318QIQIQIQIQIQIQt0.1614951313767.9430.09018.0.1727531417757.6610.11631.米卅・0.173549CovarianceCorrelation-198765432101234567891SidErrormarkstwostandarderrorsCorrel&tionInverseCorrel&tion10.499200■1>iladjOiabiladiH>al>ill•P•T«/p^p«p«T«/p^p«p20.35733.,。■山山皿奥也30.250040BbilBdithah•Tp40.27020.50.240010alteiaei60.17013.■林.70.251640alteiaei80.21621.酬俐.90.10666.・100.13339.110.11439.120.23765.130.06057.»・140.00932..-19876543210123456781PartialAutocorrelations1-0.35584•ifei«>i.2-0.25802HiQ>al>illHi03-0.04965・*.4-0.14001,呻05-0.05222・出.60.094190牌•7-0.13378・出.8-0.14985.呻0Correlation-198765432101234567891SAS系统2014年05月08曰星期四下午040寸13分20秒2TheARIMAProcedurePartialAutocorrelationsParameterMUMAUParameterMUMAUMAMARIJMU1.0000.2880.2200.22?MA1,10.2881.0000.0670.756MA2J0.2200.0671.0000.159AR1,10.2270.7560.1591.000ToChi-AutocorrelationPr>CheckofResidualsLagSquareDFChiSq■--Autocorrelations---62.6830.4435-0.0450.0550.137-0.1230.046129.2590.4146-0.211-0.0970.079-0.043D.1661816.97150.3206-0.0060.160-0.045-0.0860.1522422.34210.3739-0.090Modelfor-0.013-0.071variablex0.0270.190Correlationsof

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论