版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.且,则角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角2.如果AB>0,BC>0,那么直线Ax-By-C=0不经过的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限3.设函数,则下列结论错误的是()A.的一个周期为B.的图像关于直线对称C.的图像关于点对称D.在有3个零点4.已知函数y=log2(x2-2kx+k)的值域为R,则k的取值范围是()A.0<k<1 B.0≤k<1C.k≤0或k≥1 D.k=0或k≥15.方程的实数根大约所在的区间是A. B.C. D.6.已知平面向量,,若,则实数值为()A.0 B.-3C.1 D.-17.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为A.1010.1 B.10.1C.lg10.1 D.8.已知集合,则()A B.C. D.9.已知集合A={1,2,3},B={x∈N|x≤2},则A∪B=()A.{2,3} B.{0,1,2,3}C.{1,2} D.{1,2,3}10.已知函数为上偶函数,且在上的单调递增,若,则满足的的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数据的第50百分位数是__________.12.已知点为圆上的动点,则的最小值为__________13.正方体中,分别是,的中点,则直线与所成角的余弦值是_______.14.若,,三点共线,则实数的值是__________15.若,,且,则的最小值为__________16.已知平面向量,,若,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.总书记指出:“我们既要绿水青山,也要金山银山.”新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到年中国的汽车总销量将达到万辆,并希望新能源汽车至少占总销量的五分之一.江苏某新能源公司某年初购入一批新能源汽车充电桩,每台元,到第年年末每台设备的累计维修保养费用为元,每台充电桩每年可给公司收益元.()(1)每台充电桩第几年年末开始获利;(2)每台充电桩在第几年年末时,年平均利润最大.18.已知函数.(1)求函数的最小正周期及函数的对称轴方程;(2)若,求函数的单调区间和值域.19.设函数(1)若不等式解集,求、的值;(2)若,在上恒成立,求实数的取值范围20.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为()件.当时,年销售总收入为()万元;当时,年销售总收入为万元.记该工厂生产并销售这种产品所得的年利润为万元.(年利润=年销售总收入一年总投资)(1)求(万元)与(件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?21.(1)已知,且,求的值(2)已知,是关于x的方程的两个实根,且,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】直接由三角函数的象限符号取交集得答案.【详解】由,可得为第二或第四象限角;由,可得为第一、第四及轴非负半轴上的角∴取交集可得,是第四象限角故选:D2、B【解析】斜率为,截距,故不过第二象限.考点:直线方程.3、D【解析】利用辅助角公式化简,再根据三角函数的性质逐个判断即可【详解】,对A,最小周期为,故也为周期,故A正确;对B,当时,为的对称轴,故B正确;对C,当时,,又为的对称点,故C正确;对D,则,解得,故在内有共四个零点,故D错误故选:D4、C【解析】根据对数函数值域为R的条件,可知真数可以取大于0的所有值,因而二次函数判别式大于0,即可求得k的取值范围【详解】因为函数y=log2(x2-2kx+k)的值域为R所以解不等式得k≤0或k≥1所以选C【点睛】本题考查了对数函数的性质,注意定义域为R与值域为R是不同的解题方法,属于中档题5、C【解析】方程的根转化为函数的零点,判断函数的连续性以及单调性,然后利用零点存在性定理推出结果即可【详解】方程的根就是的零点,函数是连续函数,是增函数,又,,所以,方程根属于故选C【点睛】本题考查函数零点存在性定理的应用,考查计算能力6、C【解析】根据,由求解.【详解】因为向量,,且,所以,解得,故选:C.7、A【解析】由题意得到关于的等式,结合对数的运算法则可得亮度的比值.【详解】两颗星的星等与亮度满足,令,.故选A.【点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.8、D【解析】利用元素与集合的关系判断即可.【详解】由集合,即集合是所有的偶数构成的集合.所以,,,故选:D9、B【解析】先求出集合B,再求A∪B.【详解】因为,所以.故选:B10、B【解析】根据偶函数的性质和单调性解函数不等式【详解】是偶函数,.所以不等式化为,又在上递增,所以,或,即或故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、16【解析】第50百分位数为数据的中位数,即得.【详解】数据的第50百分位数,即为数据的中位数为.故答案为:16.12、-4【解析】点为圆上的动点,所以.由,所以当时有最小值-4.故答案为-4.13、【解析】结合异面直线所成角的找法,找出角,构造三角形,计算余弦值,即可【详解】连接,而,所以直线与所成角即为,设正方体边长为1,则,所以余弦值为【点睛】考查了异面直线所成角的计算方法,关键得出直线与所成角即为,难度中等14、5【解析】,,三点共线,,即,解得,故答案为.15、##【解析】运用均值不等式中“1”的妙用即可求解.【详解】解:因为,,且,所以,当且仅当时等号成立,故答案为:.16、【解析】求出,根据,即,进行数量积的坐标运算,列出方程,即可求解【详解】由题意知,平面向量,,则;因为,所以,解得故答案为【点睛】本题主要考查了向量的坐标运算,以及向量的数量积的应用,其中解答中根据平面向量垂直的条件,得到关于的方程是解答的关键,着重考查了运算与求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)第年;(2)第年.【解析】(1)构造二次函数模型,由二次函数解得结果;(2)由(1)知年平均利润,结合对勾函数单调性,验证可知,由此可得结果.【小问1详解】设每台充电桩在第年年末的利润为,则,令,解得:,又,,,每台充电桩从第年年末开始获利;【小问2详解】设为每台充电桩在第年年末的年平均利润,则;在上单调递减,在上单调递增,上单调递增,在上单调递减,又,,,,,每台充电桩在第年年末时,年平均利润最大.18、(1)最小正周期为,对称轴方程为(2)函数在上单调递减,在上单调递增;值域为【解析】(1)先通过降幂公式化简成,再按照周期和对称轴方程进行求解;(2)求出整体的范围,再结合正弦函数的单调性求解单调区间和值域.【小问1详解】;函数的最小正周期为,函数的对称轴方程为;【小问2详解】,,时,函数单调递减,即时,函数在上单调递减;时,函数在单调递增,即时,函数在上单调递增.,函数的值域为.19、(1),;(2).【解析】(1)分析可知的两根是、,利用韦达定理可求得实数、的值;(2)分析可知不等式在上恒成立,可得出,由此可解得实数的取值范围.【详解】由已知可知,方程的两根是、且,所以,解得;(2),可得,,因为在上恒成立,则在上恒成立,所以,,解得.因此,实数的取值范围是.20、(1)();(2)当年产量为件时,所得年利润最大,最大年利润为万元.【解析】(1)根据已知条件,分当时和当时两种情况,分别求出年利润的表达式,综合可得答案;(2)根据(1)中函数解析式,求出最大值点和最大值即可【详解】(1)由题意得:当时,,当时,,故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024物业管理顾问合同范本:智慧社区解决方案3篇
- 2024民办学校教职工劳动合同解除争议处理范本3篇
- 2024年股权赠与协议书范本2篇
- 2024石材荒料矿山安全生产培训与教育合同3篇
- 2024污泥处理与资源化利用一体化运输服务协议3篇
- 2025年度4S店试乘试驾活动安全保障协议3篇
- 俄语基础语法知到智慧树章节测试课后答案2024年秋山东交通学院
- 动物外科与产科知到智慧树章节测试课后答案2024年秋渭南职业技术学院
- 高空垃圾处理安全协议
- 箱包市场硅藻泥施工合同
- GB/T 22723-2024天然气能量的测定
- 能源岗位招聘笔试题与参考答案(某大型国企)2024年
- 航空与航天学习通超星期末考试答案章节答案2024年
- 麻醉苏醒期躁动患者护理
- 英语雅思8000词汇表
- 2024年《13464电脑动画》自考复习题库(含答案)
- 2025年辽宁中考语文复习专项训练:文言文阅读(含解析)
- 第 一 章 二 极 管 及 其 应 用
- 供暖通风与空气调节-试卷及答案-试卷A(含答案)
- 2024年11月北京地区学位英语真题及答案
- 血脂康胶囊的经济学评估
评论
0/150
提交评论