浙江省温州东瓯中学 2022-2023学年高一数学第一学期期末经典试题含解析_第1页
浙江省温州东瓯中学 2022-2023学年高一数学第一学期期末经典试题含解析_第2页
浙江省温州东瓯中学 2022-2023学年高一数学第一学期期末经典试题含解析_第3页
浙江省温州东瓯中学 2022-2023学年高一数学第一学期期末经典试题含解析_第4页
浙江省温州东瓯中学 2022-2023学年高一数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.集合A={x∈N|1≤x<4}的真子集的个数是()A.16 B.8C.7 D.42.若,,,则()A. B.C. D.3.若函数的定义域为,满足:①在内是单调函数;②存在区间,使在上的值域为,则称函数为“上的优越函数”.如果函数是“上的优越函数”,则实数的取值范围是()A.B.C.D.4.已知函数,若存在R,使得不等式成立,则实数的取值范围为()A. B.C. D.5.函数f(x)=2x+x-2的零点所在区间是()A. B.C. D.6.已知函数,则满足的x的取值范围是()A. B.C. D.7.已知,则下列结论正确的是()A. B.C. D.8.函数的定义域为()A.B.且C.且D.9.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件10.的值是A.0 B.C. D.111.在下列函数中,最小值为2的是()A.(且) B.C. D.12.函数的零点所在区间是()A B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.果蔬批发市场批发某种水果,不少于千克时,批发价为每千克元,小王携带现金3000元到市场采购这种水果,并以此批发价买进,如果购买的水果为千克,小王付款后剩余现金为元,则与之间的函数关系为_______;的取值范围是________.14.已知关于的方程在有解,则的取值范围是________15.已知角的终边经过点,则的值等于_____16.已知圆及直线,当直线被圆截得的弦长为时,的值等于________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知,且是第四象限角.(1)求和的值;(2)求的值;18.已知是同一平面内的三个向量,其中(1)若,且,求的坐标;(2)若,且与的夹角为,求的值19.已知,(1)若,求a的值;(2)若函数在内有且只有一个零点,求实数a的取值范围20.已知函数,,且求实数m的值;作出函数的图象并直接写出单调减区间若不等式在时都成立,求t的取值范围21.在2020年初,新冠肺炎疫情袭击全国,丽水市某村施行“封村”行动.为了更好地服务于村民,村卫生室需建造一间地面面积为30平方米且墙高为3米的长方体供给监测站.供给监测站的背面靠墙,无需建造费用,因此甲工程队给出的报价为:正面新建墙体的报价为每平方米600元,左右两面新建墙体报价为每平方米360元,屋顶和地面以及其他报价共计21600元,设屋子的左右两侧墙的长度均为x米.(1)当左右两面墙的长度为多少时,甲工程队报价最低,最低报价为多少?(2)现有乙工程队也参与此监测站建造竞标,其给出的整体报价为元,若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a的取值范围.22.如图,在四棱锥中,底面是菱形,,且侧面平面,点是的中点(1)求证:(2)若,求证:平面平面

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】先用列举法写出集合A,再写出其真子集即可.【详解】解:∵A={x∈N|1≤x<4}={1,2,3},∴A={x∈N|1≤x<4}真子集为:∅,1,故选:C2、C【解析】先由,可得,结合,,可得,继而得到,,转化,利用两角差的正弦公式即得解【详解】由题意,故故又,故,则故选:C【点睛】本题考查了两角和与差的正弦公式、同角三角函数关系综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题3、D【解析】由于是“上的优越函数”且函数在上单调递减,由题意得,,问题转化为与在时有2个不同的交点,结合二次函数的性质可求【详解】解:因为是“上的优越函数”且函数在上单调递减,若存在区间,使在上的值域为,由题意得,,所以,,即与在时有2个不同的交点,根据二次函数单调性质可知,即故选:D4、D【解析】利用函数的奇偶性与单调性把函数不等式变形,然后由分离参数法转化为求函数的最值【详解】是奇函数,且在上是增函数,因此不等式可化为,所以,,由得的最小值是2,所以故选:D5、C【解析】根据函数零点的存在性定理可得函数零点所在的区间【详解】解:函数,,(1),根据函数零点的存在性定理可得函数零点所在的区间为,故选C【点睛】本题主要考查函数的零点的存在性定理的应用,属于基础题6、D【解析】通过解不等式来求得的取值范围.【详解】依题意,即:或,即:或,解得或.所以的取值范围是.故选:D7、B【解析】先求出,再对四个选项一一验证即可.【详解】因为,又,解得:.故A错误;对于B:,故B正确;对于C:,故C错误;对于D:,故D错误.故选:B8、C【解析】根据给定函数有意义直接列出不等式组,解不等式组作答.【详解】依题意,,解得且,所以的定义域为且.故选:C9、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.10、B【解析】利用诱导公式和和差角公式直接求解.【详解】故选:B11、C【解析】根据基本不等式的使用条件,对四个选项分别进行判断,得到答案.【详解】选项A,当时,,所以最小值为不正确;选项B,因为,所以,所以,当且仅当,即时等号成立,而,所以等号不成立,所以不正确;选项C,因为,所以,当且仅当,即时,等号成立,所以正确;选项D,因为,所以,所以,当且仅当,即时,等号成立,而,所以不正确.故选:C.【点睛】本题考查基本不等式求和的最小值,基本不等式的使用条件,属于简单题.12、C【解析】利用零点存在定理可得出结论.【详解】函数在上单调递增,因为,,,,所以,函数的零点所在区间是.故选:C.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、①.②.【解析】根据题意,直接列式,根据题意求的最小值和最大值,得到的取值范围.【详解】由题意可知函数关系式是,由题意可知最少买千克,最多买千克,所以函数的定义域是.故答案为:;14、【解析】将原式化为,然后研究函数在上的值域即可【详解】解:由,得,令,令,因为,所以,所以,即,因为,所以函数可化为,该函数在上单调递增,所以,所以,所以,所以的取值范围是,故答案为:15、【解析】因为角的终边经过点,过点P到原点的距离为,所以,所以,故填.16、【解析】结合题意,得到圆心到直线的距离,结合点到直线距离公式,计算a,即可【详解】结合题意可知圆心到直线的距离,所以结合点到直线距离公式可得,结合,所以【点睛】考查了直线与圆的位置关系,考查了点到直线距离公式,难度中等三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),;(2).【解析】(1)根据象限和公式求出的正弦,再用倍角公式计算即可(2)求出角正切值,再展开,代入计算即可.【详解】解:(1),由得,,又是第四象限角,,,,.(2)由(1)可知,,.18、(1)或(2)【解析】(1)由可设,再由可得答案(2)由数量积的定义可得,代入即可得答案【详解】解:(1)由可设,∵,∴,∴,∴或(2)∵与的夹角为,∴,∴【点睛】本题考查向量的基本运算,属于简单题19、(1)(2)【解析】(1)由即可列方程求出a的值;(2)化简f(x)解析式,利用进行换元,将问题转化为在内有且只有一个零点,在上无零点进行讨论.【小问1详解】由得,即,,解得,∵,∴;【小问2详解】,令,则当时,,,,在内有且只有一个零点等价于在内有且只有一个零点,在上无零点.∵a>1,在内为增函数.①若在内有且只有一个零点,内无零点,故只需,解得;②若为的零点,内无零点,则,得,经检验,符合题意综上,实数a的取值范围是20、(1)(2)详见解析,单调减区间为:;(3)【解析】由,代入可得m值;分类讨论,去绝对值符号后根据二次函数表达式,画出图象由题意得在时都成立,可得在时都成立,解得即可【详解】解:,由得即解得:;由得,即则函数的图象如图所示;单调减区间为:;由题意得在时都成立,即在时都成立,即在时都成立,在时,,【点睛】本题考查的知识点是函数解析式的求法,零点分段法,分段函数,由图象分析函数的值域,其中利用零点分段法,求函数的解析式是解答的关键21、(1)当左右两面墙的长度为5时,报价最低为43200元;(2).【解析】(1)设甲工程队的总造价为元,推出,利用基本不等式求解最值即可;(2)由题意对任意的,恒成立.即恒成立,利用换元法以及基本不等式求解最小值即可【详解】(1)设甲工程队的总造价为元,则,当且仅当,即时等号成立即当左右两侧墙的长度为5米时,甲工程队的报价最低为43200元(2)由题意可得,对任意的,恒成立即,从而恒成立,令,,,又在,为单调增函数,故当时,所以【点睛】方法点睛:求函数的最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数;(4)基本不等式法.要根据已知条件灵活选择方法求解.22、(1)见解析;(2)见解析【解析】分析:(1)可根据为等腰三角形得到,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论