2023届北京市昌平区临川育人学校高一上数学期末学业水平测试模拟试题含解析_第1页
2023届北京市昌平区临川育人学校高一上数学期末学业水平测试模拟试题含解析_第2页
2023届北京市昌平区临川育人学校高一上数学期末学业水平测试模拟试题含解析_第3页
2023届北京市昌平区临川育人学校高一上数学期末学业水平测试模拟试题含解析_第4页
2023届北京市昌平区临川育人学校高一上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知向量且,则x值为().A.6 B.-6C.7 D.-72.函数f(x)=A.(-2-1) B.(-1,0)C.(0,1) D.(1,2)3.某市中心城区居民生活用水阶梯设置为三档,采用边际用水量确定分档水量为:第一档水量为240立方米/户年及以下部分;第二档水量为240立方米/户年以上至360立方米/户年部分(含360立方米/户年);第三档水量为360立方米/户年以上部分.家庭常住人口在4人(不含4人)以上的多人口户,凭户口簿,其水量按每增加一人各档水量递增50立方米/年确定.第一档用水价格为2.1元/立方米;第二档用水价格为3.2元/立方米;第三档用水价格为6.3元/立方米.小明家中共有6口人,去年整年用水花费了1602元,则小明家去年整年的用水量为().A.474立方米 B.482立方米C.520立方米 D.540立方米4.函数图像大致为()A. B.C. D.5.可以化简成()A. B.C. D.6.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,其终边与单位圆相交于点,则()A. B.C. D.7.已知,则的值为()A. B.C. D.8.如图,在正方体中,分别为的中点,则异面直线与所成的角等于A. B.C. D.9.定义在上的函数满足,当时,,当时,.则=()A.338 B.337C.1678 D.201310.半径为2,圆心角为的扇形的面积为()A. B.C. D.2二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若方程组有解,则实数的取值范围是__________12.已知一扇形的弧所对的圆心角为54°,半径r=20cm,则扇形的周长为___cm.13.设函数,若关于x的方程有且仅有6个不同的实根.则实数a的取值范围是_______.14.设函数,则________.15.是第___________象限角.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知向量=(3,4),=(1,2),=(-2,-2)(1)求||,||的值;(2)若=m+n,求实数m,n的值;(3)若(+)∥(-+k),求实数k的值17.已知,,,.(1)求和的值;(2)求的值.18.某汽车配件厂拟引进智能机器人来代替人工进行某个操作,以提高运作效率和降低人工成本,已知购买x台机器人的总成本为(万元)(1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中求得的数量购买机器人,需要安排m人协助机器人,经实验知,每台机器人的日平均工作量(单位:次),已知传统人工每人每日的平均工作量为400次,问引进机器人后,日平均工作量达最大值时,用人数量比引进机器人前工作量达此最大值时的用人数量减少百分之几?19.某市3000名市民参加“美丽城市我建设”相关知识初赛,成绩统计如图所示(1)求a的值;(2)估计该市参加考试的3000名市民中,成绩在上的人数;(3)若本次初赛成绩前1500名参加复赛,则进入复赛市民的分数线应当如何制定(结果保留两位小数)20.现有银川二中高一年级某班甲、乙两名学生自进入高中以来的历次数学成绩(单位:分),具体考试成绩如下:甲:、、、、、、、、、、、、;乙:、、、、、、、、、、、、(1)请你画出两人数学成绩的茎叶图;(2)根据茎叶图,运用统计知识对两人的成绩进行比较.(最少写出两条统计结论)21.观察下列各等式:,,.(1)请选择其中的一个式子,求出a的值;(2)分析上述各式的特点,写出能反映一般规律的等式,并进行证明.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】利用向量垂直的坐标表示可以求解.【详解】因为,,所以,即;故选:B.【点睛】本题主要考查平面向量垂直的坐标表示,熟记公式是求解的关键,侧重考查数学运算的核心素养.2、C【解析】,所以零点在区间(0,1)上考点:零点存在性定理3、D【解析】根据题意,建立水费与用水量的函数关系式,即可求解.【详解】设小明家去年整年用水量为x,水费为y.若时,则;若时,则;若时,则.令,解得:故选:D4、C【解析】先分析给定函数的奇偶性,排除两个选项,再在x>0时,探讨函数值正负即可判断得解.【详解】函数的定义域为,,即函数是定义域上的奇函数,其图象关于原点对称,排除选项A,B;x>0时,,而,则有,显然选项D不满足,C符合要求.故选:C5、B【解析】根据指数幂和根式的运算性质转化即可【详解】解:,故选:B6、C【解析】由已知利用任意角的三角函数求得,再由二倍角的余弦公式求解即可【详解】解:因为角的终边与单位圆相交于点,则,故选:C7、C【解析】利用余弦的二倍角公式即可求解.【详解】.故选:C.8、B【解析】取的中点,则由三角形的中位线的性质可得平行且等于的一半,故或其补角即为异面直线与所成的角.设正方体的棱长为1,则,,故为等边三角形,故∠EGH=60°考点:空间几何体中异面直线所成角.【思路点睛】本题主要考查异面直线所成的角的定义和求法,找出两异面直线所成的角,是解题的关键,体现了等价转化的数学思想.取的中点,由三角形的中位线的性质可得或其补角即为异面直线与所成的角.判断为等边三角形,从而求得异面直线与所成的角的大小9、B【解析】,,即函数是周期为的周期函数.当时,,当时,.,,故本题正确答案为10、D【解析】利用扇形的面积公式即得.【详解】由题可得.故选:D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】,化为,要使方程组有解,则两圆相交或相切,,即或,,故答案为.12、6π+40【解析】根据角度制与弧度制的互化,可得圆心角,再由扇形的弧长公式,可得弧长,即可求解扇形的周长,得到答案.【详解】由题意,根据角度制与弧度制的互化,可得圆心角,∴由扇形的弧长公式,可得弧长,∴扇形的周长为.【点睛】本题主要考查了扇形的弧长公式的应用,其中解答中熟记扇形的弧长公式,合理准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.13、或或【解析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.【详解】作出函数的简图如图,令,要使关于的方程有且仅有个不同的实根,(1)当方程有两个相等的实数根时,由,即,此时当,此时,此时由图可知方程有4个实数根,此时不满足.当,此时,此时由图可知方程有6个实数根,此时满足条件.(2)当方程有两个不同的实数根、时,则或当时,由可得则的根为由图可知当时,方程有2个实数根当时,方程有4个实数根,此时满足条件.当时,设由,则,即综上所述:满足条件的实数a的取值范围是或或故答案为:或或【点睛】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.14、6【解析】根据分段函数的定义,分别求出和,计算即可求出结果.【详解】由题知,,,.故答案为:6.【点睛】本题考查了分段函数求函数值的问题,考查了对数的运算.属于基础题.15、三【解析】根据给定的范围确定其象限即可.【详解】由,故在第三象限.故答案为:三.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)||=5;;(2);(3).【解析】(1)利用向量的模长的坐标公式即得;(2)利用向量的线性坐标表示即得;(3)利用向量平行的坐标表示即求.【小问1详解】∵向量=(3,4),=(1,2),∴||=5,;【小问2详解】∵=(3,4),=(1,2),=(-2,-2),=m+n,∴(3,4)=m(1,2)+n(-2,-2)=(m-2n,2m-2n),所以,得;【小问3详解】∵(+)∥(-+k),又-+k=(-1-2k,-2-2k),+=(4,6),∴6(-1-2k)=4(-2-2k),解得,故实数k的值为.17、(1);(2).【解析】(1)由二倍角公式得,结合和解方程即可;(2)依次计算和的值,代入求解即可.试题解析:(1)由,得,因为,所以,又,所以,所以.(2)因为,所以,所以,于是,又,所以,由(1),所以.18、(1)8台(2)【解析】(1)根据题意将问题转化为对的求解,利用基本不等式即可;(2)先求出一台机器人的最大日工作量,根据最大工作量再求出所需要的人数,通过比较即可求解.【小问1详解】由题意当且仅当,即时,等号成立,所以应购买8台,可使每台机器人的平均成本最低【小问2详解】由,可得当时,,所以时,每台机器人的日平均工作量最大时,安排的人工数最小为20人,而此时人工操作需要的人工数为,所以可减少19、(1);(2)1950;(3)进入复赛市民的分数应当大于或等于77.14.【解析】(1)根据频率之和为,结合频率分布直方图即可求得;(2)根据(1)中所求,求得成绩在的频率,根据频数计算公式即可求得结果;(3)根据频率分布直方图中位数的求解,结合已知数据,即可求得结果.【小问1详解】依题意,,故.【小问2详解】成绩在[70,90)上的频率为,所以,所求人数为3000×0.65=1950.【小问3详解】依题意,本次初赛成绩前1500名参加复赛,即求该组数据的中位数,因为≈77.14所以,进入复赛市民的分数应当大于或等于77.14.20、(1)图见解析(2)答案见解析【解析】(1)直接按照茎叶图定义画出即可;(2)通过中位数、平均数、方差依次比较.【小问1详解】甲、乙两人数学成绩的茎叶图如图所示:【小问2详解】①从整体分析:乙同学的得分情

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论