2023届上海市上戏附中高一数学第一学期期末含解析_第1页
2023届上海市上戏附中高一数学第一学期期末含解析_第2页
2023届上海市上戏附中高一数学第一学期期末含解析_第3页
2023届上海市上戏附中高一数学第一学期期末含解析_第4页
2023届上海市上戏附中高一数学第一学期期末含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数,,则函数的图象大致是()A. B.C. D.2.已知函数,则()A. B.C. D.3.若a>b>1,0<c<1,则下列式子中不正确的是()A. B.C. D.4.已如集合,,,则()A. B.C. D.5.如图是一个几何体的三视图,则此几何体的直观图是.A. B.C. D.6.已知,,则在方向上的投影为()A. B.C. D.7.若函数f(x)=|x|+x3,则f(lg2)++f(lg5)+=()A.2 B.4C.6 D.88.已知直线,平面满足,则直线与直线的位置关系是A.平行 B.相交或异面C.异面 D.平行或异面9.若定义在R上的偶函数满足,且当时,f(x)=x,则函数y=f(x)-的零点个数是A.6个 B.4个C.3个 D.2个10.设P是△ABC所在平面内的一点,,则A. B.C. D.11.如图所示,是顶角为的等腰三角形,且,则A. B.C. D.12.已知,若,则()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数f(x)=log2(x2-5),则f(3)=______14.已知函数(1)利用五点法画函数在区间上的图象(2)已知函数,若函数的最小正周期为,求的值域和单调递增区间;(3)若方程在上有根,求的取值范围15.意大利画家达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的“悬链线问题”.双曲余弦函数,就是一种特殊的悬链线函数,其函数表达式为,相应的双曲正弦函数的表达式为.设函数,若实数m满足不等式,则m的取值范围为___________.16.若函数在上单调递增,则的取值范围是__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数f(x)=coscos-sinxcosx+(1)求函数f(x)的最小正周期和最大值;(2)求函数f(x)单调递增区间18.已知函数是奇函数,且.(1)求函数的解析式,并判定函数在区间上的单调性(无需证明);(2)已知函数且,已知在的最大值为2,求的值.19.在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的a存在,求a的值;若a不存在,请说明理由.已知集合________,.若“”是“”的充分不必要条件,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分20.已知函数,若函数的图象过点,(1)求的值;(2)若,求实数的取值范围;(3)若函数有两个零点,求实数的取值范围.21.求下列函数的值域(1)(2)22.如图,在四棱锥P-ABCD中,AB∥CD,△PAD是等边三角形,平面PAD⊥平面ABCD,已知AD=2,,AB=2CD=4(1)求证:平面PBD⊥平面PAD;(2)若M为PC的中点,求四棱锥M-ABCD的体积

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】先判断出为偶函数,排除A;又,排除D;利用单调性判断B、C.【详解】因为函数,,所以函数.所以定义域为R.因为,所以为偶函数.排除A;又,排除D;因为在为增函数,在为增函数,所以在为增函数.因为为偶函数,图像关于y轴对称,所以在为减函数.故B错误,C正确.故选:C2、B【解析】由分段函数解析式及指数运算求函数值即可.【详解】由题设,,所以.故选:B.3、D【解析】利用对数函数、指数函数与幂函数的单调性即可判断出正误.【详解】解:,,,A正确;是减函数,,B正确;为增函数,,C正确.是减函数,,D错误.故选.【点睛】本题考查了对数函数、指数函数与幂函数的单调性,考查了推理能力与计算能力,属于基础题.4、C【解析】根据交集和补集的定义可求.【详解】,故,故选:C.5、D【解析】由已知可得原几何体是一个圆锥和圆柱的组合体,上部分是一个圆锥,下部分是一个圆柱,而且圆锥和圆柱的底面积相等,故此几何体的直观图是:故选D6、A【解析】利用向量数量积的几何意义以及向量数量积的坐标表示即可求解.【详解】,,在方向上的投影为:.故选:A【点睛】本题考查了向量数量积的几何意义以及向量数量积的坐标表示,考查了基本运算求解能力,属于基础题.7、A【解析】利用f(x)解析式的特征和对数的计算法则运算即可﹒【详解】由于f(x)=|x|+x3,得f(-x)+f(x)=2|x|,又lg=-lg2,lg=-lg5∴原式=2|lg2|+2|lg5|=2(lg2+lg5)=2故选:A﹒8、D【解析】∵a∥α,∴a与α没有公共点,b⊂α,∴a、b没有公共点,∴a、b平行或异面故选D.9、B【解析】因为偶函数满足,所以的周期为2,当时,,所以当时,,函数的零点等价于函数与的交点个数,在同一坐标系中,画出的图象与的图象,如上图所示,显然的图象与的图象有4个交点.选B.点睛:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,是中档题.根据函数零点和方程的关系进行转化是解答本题的关键10、B【解析】由向量的加减法运算化简即可得解.【详解】,移项得【点睛】本题主要考查了向量的加减法运算,属于基础题.11、C【解析】【详解】∵是顶角为的等腰三角形,且∴∴故选C12、C【解析】设,求出,再由求出.【详解】设,因为所以,又,所以,所以.故选:C.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、2【解析】利用对数性质及运算法则直接求解【详解】∵函数f(x)=log2(x2-5),∴f(3)=log2(9-5)=log24=2故答案为2【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题14、(1)(2)的值域为,单调递增区间为;(3)【解析】(1)取特殊点,列表,描点,连线,画出函数图象;(2)化简得到的解析式,进而求出值域,整体法求解单调递增区间;(3)整体法先得到,换元后得到在上有根,进而求出的取值范围.【小问1详解】作出表格如下:x0020-20在平面直角坐标系中标出以下五点,,,,,,用平滑的曲线连接起来,就是函数在区间上的图象,如下图:【小问2详解】,其中,由题意得:,解得:,故,故的值域为,令,解得:,所以的单调递增区间为:【小问3详解】因为,所以,则,令,则,所以方程在上有根等价于在上有根,因为,所以,解得:,故的取值范围是.15、【解析】先判断为奇函数,且在R上为增函数,然后将转化为,从而有,进而可求出m的取值范围【详解】由题意可知,的定义域为R,因为,所以为奇函数.因为,且在R上为减函数,所以由复合函数的单调性可知在R上为增函数.又,所以,所以,解得.故答案为:.16、【解析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的取值范围【详解】∵函数在上单调递增,∴函数在区间上为增函数,∴,解得,∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)最小正周期为T=π,最大值为(2)[kπ-58π,kπ【解析】(Ⅰ)函数的最小正周期为,函数的最大值为(II)由得函数的单调递增区间为[kπ-5π18、(1);函数在区间上单调递减,在上单调递增(2)或【解析】(1)根据奇函数的性质及,即可得到方程组,求出、的值,即可得到函数解析式,再根据对勾函数的性质判断即可;(2)分和两种情况讨论,结合对数型复合函数的单调性计算可得;【小问1详解】解:函数的定义域为,是奇函数,且,且又.经检验,满足题意,故.当时,时等号成立,当时,单调递减;当时,单调递增.【小问2详解】解:①当时,是减函数,故当取得最小值时,且取得最大值2,而在区间上单调递增,所以在区间上最小值为,故的最大值是,所以.②当时,是增函数,故当取得最大值时,且取得最大值2,而在区间上单调递增,所以在区间上的最大值为,故的最大值是,所以.综上所述,或.19、见解析【解析】首先解一元二次不等式求出集合B,依题意B,再根据所选条件得到不等式组,解得即可;【详解】解:由,所以,解得所以.由题意知,A不为空集,选条件①时,,因为“”是“”充分不必要条件,所以B,,则,等号不同时取到,解得.所以实数a的取值范围是.当选条件②时,因为“”是“”的充分不必要条件,所以B,所以,解得.此时,不符合条件故不存在的值满足题意.当选条件③时,因为“”是“”的充分不必要条件,所以B,所以,该不等式组无解,故不存在的值满足题意.20、(1).(2).(3).【解析】(1)由函数过点,代入函数即可得的值;(2)由可得的取值范围;(3)由函数的大致图象即可得的取值范围.试题解析:(1),,,.(2),,.(3)当时,是减函数,值域为.偶函数,时,是增函数,值域为,函数有两个零点时,.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.本题中在结合函数图象分析得基础上还用到了方程根的分布的有关知识21、(1)(2)【解析】(1)由,可得,从而得出值域;(2)令将原函数转化为关于的二次函数,再求值域即可.【详解】(1)值域为(2)设当时y取最小值当时y取最大值所以其值域为【点睛】本题主要考查的是三角函数最值,主要用型和换元后转换成二次函数求最值,考查学生的分析问题,解决问题的能力,是基础题.22、(1)证明过程详见解析(2)【解析】(1)先证明BD⊥平面PAD,即证平面PBD⊥平面PAD.(2)取AD中点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论